Resistensi gulma Echinochloa crusss-galli terhadap herbisida berbahan aktif Metamifop di areal persawahan Sulawesi Selatan
Abstract
Abstrak
Barnyardgrass [Echinochloa cruss-galli (L.) P. Beauv.] diakui sebagai gulma paling bermasalah di areal persawahan Provinsi Sulawesi Selatan, Indonesia. Herbisida metamifop sudah lama digunakan untuk mengendalikan gulma tersebut pada areal pertanaman padi sawah di Sulawesi Selatan dengan intensitas aplikasi yang cukup tinggi. Hal tersebut menimbulkan E. cruss-galli yang sulit dikendalikan dan diperkirakan resisten terhadap herbisida metamifop. Namun demikian, kasus resistensi gulma terhadap herbisida metamifop di Indonesia belum banyak dilaporkan dan diteliti. Penelitian ini bertujuan untuk mengetahui (1) adanya resistensi gulma E. cruss-galli terhadap metamifop, (2) tingkat resistensi yang terjadi pada gulma E. cruss-galli terhadap metamifop. Penelitian dilakukan di rumah kaca Fakultas Pertanian Universitas Padjadjaran, Jatinangor, Kabupaten Sumedang, Jawa Barat dari bulan November 2021 hingga Januari 2022. Uji tingkat resistensi dilakukan dengan metode Whole Plant Pot Test menggunakan Rancangan Petak Terbagi (Split Plot Design) dengan 3 ulangan. Petak utama adalah dosis herbisida metamifop: 0, 31,25, 62,5, 125, 250, 500 dan 1000 g b.a/ha. Anak petak adalah tempat asal gulma, yaitu gulma terpapar (Sidrap, Maros, Pinrang) dan tidak terpapar herbisida. Hasil Penelitian menunjukan bahwa gulma E. cruss-galli asal Pinrang tergolong ke dalam resistensi rendah, sedangkan E. cruss-galli asal Sidrap dan Maros masih tergolong sensitif terhadap aplikasi metamifop.
Kata Kunci: Echinochloa cruss-galli, Metamifop, Resistensi Gulma
Abstract
Barnyardgrass [Echinochloa cruss-galli (L.) P. Beauv.] is acknowledged to be the most troublesome weed in paddy fields of South Sulawesi Province, Indonesia. The herbicide containing metamifop active ingredient has long been used to control this weed in lowland paddy fields in South Sulawesi with a reasonably high application intensity. It is caused difficulties in controlling E. cruss-galli due to resistance issue to the herbicide. However, weed resistance to metamifop herbicide cases in Indonesia have not been widely reported and studied. The study aimed to (1) confirm the presence of herbicide-resistant of E. cruss-galli toward metamifop, (2) classify the resistance level of E. cruss-galli toward metamifop. The research was conducted at the greenhouse of Faculty of Agriculture, Universitas Padjadjaran, Sumedang District, Wesr Java from November 2021 until January 2022. Resistance level test of E. cruss-galli was performed using the Whole Plant Pot Test method. The treatments were organized in a Split Plot Design with 3 replications. The main plot was the dose of metamifop: 0, 31.25, 62.5, 125, 250, 500 dan 1000 g b.a/ha. The subplot was the origin of weed: exposed weed (Sidrap, Maros, Pinrang) and unexposed weed to herbicides. The result showed that only one E. cruss-galli from Pinrang showed a low level of resistance while E. cruss-galli from Sidrap and maros still sensitive to metamifop.
Keywords: Echinochloa cruss-galli, Metamifop, Weed resistance
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Ahmad-Hamdani, M.S., M.J. Owen, Q. Yu, and S.B. Powles. 2012. ACCase-inhibiting herbicide-resistant Avena spp. populations from the Western Australian grain belt . Weed Technology, 26(1): 130–136. https://doi.org/10.1614/wt-d-11-00089.1
Bai, S., F. Zhang, Z. Li, H. Wang, Q. Wang, J. Wang, W. Liu, and L. Bai. 2019. Target-site and non-target-site-based resistance to tribenuron-methyl in multiply-resistant Myosoton aquaticum L. Pesticide Biochemistry and Physiology, 155: 8–14. https://doi.org/10.1016/j.pestbp.2018.12.004
Burgos, N.R. 2015. Whole-plant and seed bioassays for resistance confirmation. Weed Science, 63(1): 152–165. DOI: https://doi.org/10.1614/ws-d-14-00019.1
Délye, C., X.Q. Zhang, S. Michel, A. Matéjicek, and S.B. Powles. 2005. Molecular bases for sensitivity to acetyl-coenzyme a carboxylase inhibitors in black-grass. Plant Physiology, 137(3): 794–806. https://doi.org/10.1104/pp.104.046144
Gaines, T.A., S.O. Duke, S. Morran, C.A.G. Rigon, P.J. Tranel, A. Küpper, and F.E. Dayan. 2020. Mechanisms of evolved herbicide resistance. Journal of Biological Chemistry, 295(30): 10307–10330. https://doi.org/10.1074/jbc.REV120.013572
Gerhards, R., J. Dentler, C. Gutjahr, S. Auburger, and E. Bahrs. 2016. An approach to investigate the costs of herbicide-resistant Alopecurus myosuroides. Weed Research, 56(6): 407–414. https://doi.org/10.1111/wre.12228
Heap, I. and S.O. Duke. 2018. Overview of glyphosate-resistant weeds worldwide. Pest Management Science, 74(5): 1040–1049. https://doi.org/10.1002/ps.4760
Kilkoda, A.K., T. Nurmala, dan D. Widayat. 2015. Pengaruh keberadaan gulma (Ageratum conyzoides dan Boreria alata) terhadap pertumbuhan dan hasil tiga ukuran varietas kedelai (Glycine max L. Merr) pada percobaan pot bertingkat. Kultivasi, 14(2): 1–9. https://doi.org/10.24198/kltv.v14i2.12072
Kukorelli, G., P. Reisinger, and G. Pinke. 2013 ACCase inhibitor herbicides - selectivity, weed resistance and fitness cost: A review. Int. J. Pest Manag., 59: 165–173. Available at: http://dx.doi.org/10.1080/09670874.2013.821212.
Seefeldt, S.S., J.E. Jensen, and E.P. Feurst. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technology, 9(2): 218–227. https://doi.org/10.1017/s0890037x00023253
Shaner, D.L. 2014. Lessons learned from the history of herbicide resistance. Weed Science, 62(2): 427–431. https://doi.org/10.1614/ws-d-13-00109.1
Takano, H.K., R.F.L. Ovejero, G.G. Belchior, G.P.L. Maymone, and F.E. Dayan. 2020. ACCase-inhibiting herbicides: Mechanism of action, resistance evolution and stewardship. Scientia Agricola, 78(1). https://doi.org/10.1590/1678-992x-2019-0102
Vrbničanin, S., D. Pavlović, and D. Božić. 2017. Weed resistance to herbicides. Herbicide Resistance in Weeds and Crops, October. https://doi.org/10.5772/67979
Widayat, D., Y. Sumekar, dan B. M. Yanti. 2018. Efek campuran herbisida Triafamone 100 g/l dengan Tefuryltrione 200 g/l terhadap pertumbuhan gulma utama tanaman padi sawah (Oryza sativa L.). Prosiding Seminar Nasional XX. Himpunan Ilmu Gulma Indonesia pp. 84-93.
Won, O.J., J.J. Lee, M.Y. Eom, S.J. Suh, S.H. Park, K.S. Hwang, J.Y. Pyon, and K.W. Park. 2014. Identification of Herbicide-Resistant Barnyardgrass (Echinochloa crus-galli var. crus-galli) Biotypes in Korea. Weed and Turfgrass Science, 3(2): 110–113. https://doi.org/10.5660/wts.2014.3.2.110
Xia, X., W. Tang, S. He, J. Kang, H. Ma, and J. Li. 2016. Mechanism of metamifop inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase in Echinochloa crus-galli. Scientific Reports, 6(September): 1–10. https://doi.org/10.1038/srep34066
Yuan, G., Z. Tian, T. Li, Z. Qian, W. Guo, and G. Shen. 2021. Cross-resistance pattern to ACCase-inhibiting herbicides in a rare Trp-2027-Ser mutation chinese sprangletop (Leptochloa chinensis) population. Chilean Journal of Agricultural Research, 81(1): 62–69. https://doi.org/10.4067/S0718-58392021000100062
Zarwazi, L., A. Muhammad, dan G. Dwi. 2016. Potensi gangguan gulma pada tiga sistem budidaya padi sawah. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 44 (2): 147. https://doi.org/10.24831/jai.v44i2.13481.
Zhang, Z., T. Gu, B. Zhao, X. Yang, Q. Peng, Y. Li, and L. Bai. 2017. Effects of common echinochloa varieties on grain yield and grain quality of rice. Field Crops Research, 203 (March): 163–72. https://doi.org/10.1016/j.fcr.2016.12.003.
DOI: https://doi.org/10.24198/kultivasi.v21i3.38960
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Kultivasi Indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.