The impact of color of artificial LED lighting on microgreen: a review
Abstract
Abstract
Microgreen is an emerging agricultural food product that its development can be close type system and rely on the presence of artificial lighting, such as LED. Present study aimed to sum up the artificial LED lighting impact on microgreen production. In general, there were three important variables of light for plant, i.e., light intensity, light duration/photoperiod and light quality. The effect of different LED color on microgreen yield and phytochemical content is also revealed in present review. The red, blue, combination of red and blue, green, white, yellow and UV-A light are numerous choice for optimal microgreen production. However, there is no one-to-all recommendation here, since the LED light suitability is depending upon the plant species and target of market.
Keywords: artificial lighting, LED color, microgreen, UV-A light
Abstrak
Microgreen adalah produk pangan pertanian yang sedang marak dikembangkan dan dapat diproduksi dalam sistem tertutup dengan dukungan pencahayaan buatan seperti LED. Penelitian ini bertujuan untuk mereview dampak penggunaan pencahayaan buatan LED terhadap produksi microgreen. Pada umumnya, terdapat 3 peubah penting cahaya untuk tanaman yakni intensitas cahaya, panjang hari/fotoperiodisitas dan kualitas cahaya. Pengaruh dari perbedaan warna LED terhadap hasil panen dan kandungan fitokimia microgreen dijelaskan pada artikel review ini. Lampu merah, biru, kombinasi merah dan biru, hijau, putih, kuning dan UV-A merupakan berbagai pilihan untuk produksi microgreen yang optimal. Namun tidak ada rekomendasi yang bersifat umum, karena kesesuaian LED bergantung pada faktor jenis tanaman dan target pasar.
Kata Kunci: pencahayaan buatan, warna LED, microgreen, lampu UV-A
Keywords
Full Text:
PDFReferences
Abellán, A., Domínguez-Perles, R., Moreno, D. A., & García-Viguera, C. 2019. Sorting out the value of cruciferous sprouts as sources of bioactive compounds for nutrition and health. Nutrients, 11(2), 1–22. https://doi.org/10.3390/nu11020429
Alrifai, O., Hao, X., Marcone, M. F., & Tsao, R. 2019. Current review of the modulatory effects of LED lights on photosynthesis of secondary metabolites and future perspectives of microgreen vegetables. Journal of Agricultural and Food Chemistry, 67, 6075–6090. https://doi.org/10.1021/acs.jafc.9b00819.
Amoozgar, A., Mohammadi, A., & Sabzalian, M. R. 2017. Impact of light-emitting diode irradiation on photosynthesis, phytochemical composition and mineral element content of lettuce cv. Grizzly. Photosynthetica, 55(1), 85–95. https://doi.org/10.1007/s11099-016-0216-8
Benincasa, P., Falcinelli, B., Lutts, S., Stagnari, F., & Galieni, A. 2019. Sprouted grains: A comprehensive review. Nutrients, 11(2), 1–29. https://doi.org/10.3390/nu11020421
Bian, Z. H., Yang, Q. C., & Liu, W. K. 2015. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: A review. Journal of the Science of Food and Agriculture, 95(5), 869–877. https://doi.org/10.1002/jsfa.6789
Brazaitytė, A., Jankauskienė, J., & Novičkovas, A. 2013. The effects of supplementary short-term red LEDs lighting on nutritional quality of Perilla frutescens L. microgreens. Rural Dev, 6, 54-58.
Brazaitytė, A., Sakalauskienė, S., Samuolienė, G., Jankauskienė, J., Viršilė, A., Novičkovas, A., ... & Duchovskis, P. 2015. The effects of LED illumination spectra and intensity on carotenoid content in Brassicaceae microgreens. Food chemistry, 173, 600-606. https://doi.org/10.1016/j.foodchem.2014.10.077
Brazaitytė, A., Vaštakaitė, V., Viršilė, A., Jankauskienė, J., Samuolienė, G., Sakalauskienė, S., ... & Duchovskis, P. 2018. Changes in mineral element content of microgreens cultivated under different lighting conditions in a greenhouse. In International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant, 1227; pp. 507-516.
Brazaityte, A., Viršile, A., Jankauskiene, J., Sakalauskiene, S., Samuoliene, G., Sirtautas, R., Novičkovas, A., Dabašinskas, L., Miliauskiene, J., Vaštakaite, V., Bagdonavičiene, A., & Duchovskis, P. 2015b. Effect of supplemental UV-A irradiation in solid-state lighting on the growth and phytochemical content of microgreens. International Agrophysics, 29(1), 13–22. https://doi.org/10.1515/intag-2015-0004
Carvalho, S. D., & Folta, K. M. 2016. Green light control of anthocyanin production in microgreens. Acta Horticulturae, 1134, 13–18. https://doi.org/10.17660/ActaHortic.2016.1134.2
Choe, U., Yu, L. L., & Wang, T. T. Y. 2018. The science behind microgreens as an exciting new food for the 21st century. Journal of Agricultural and Food Chemistry, 66, 11519–11530. https://doi.org/10.1021/acs.jafc.8b03096.
Choi, M. K., Chang, M. S., Eom, S. H., Min, K. S., & Kang, M. H. 2015. Physicochemical composition of buckwheat microgreens grown under different light conditions. Journal of the Korean Society of Food Science and Nutrition, 44(5), 709-715. https://doi.org/10.3746/jkfn.2015.44.5.709
Di Gioia, F.; Mininni, C.; Santamaria, P. 2015. How to grow microgreens. In Microgreens: Microgreens: Novel Fresh and Functional Food to Explore All the Value of Biodiversity; Di Gioia, F., Santamaria, P., Eds.; ECO-logica: Bari, Italy, 2015; pp. 51–79.
Di Gioia, F.; Renna, M.; Santamaria, P. 2017. Sprouts, Microgreens and “Baby Leaf” Vegetables BT-Minimally Processed Refrigerated Fruits and Vegetables; Yildiz, F., Wiley, R.C., Eds.; Springer US: Boston, MA, USA, 2017; pp. 403–432. ISBN 978-1-4939-7018-6.
Goodman, W., & Minner, J. 2019. Will the urban agricultural revolution be vertical and soilless? A case study of controlled environment agriculture in New York City. Land Use Policy, 83, 160–173. https//doi.org/10.1016/j.landusepol.2018.12.038
Hogewoning, S.W., G. Trouwborst, H. Maljaars, H. Poorter, W. van Ieperen, and J. Harbinson. 2010. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Expt. Bot. 61:3107–3117. https://doi.org/ 10.1093/jxb/erq132.
Jones-Baumgardt, C., Llewellyn, D., Ying, Q., & Zheng, Y. 2019. Intensity of sole-source light emitting diodes affects growth, yield, and quality of Brassicaceae microgreens. HortScience, 54, 1168–1174.
Kong, Y., Schiestel, K., & Zheng, Y. 2019. Pure blue light effects on growth and morphology a’/l,.;.;re slightly changed by adding low-level UVA or far-red light: A comparison with red light in four microgreen species. Environmental and Experimental Botany, 157, 58–68. https://doi.org/10.1016/j.envexpbot.2018.09.024
Kong, Y., Stasiak, M., Dixon, M. A., & Zheng, Y. 2018. Blue light associated with low phytochrome activity can promote elongation growth as shade-avoidance response: A comparison with red light in four bedding plant species. Environmental and Experimental Botany, 155(July), 345–359. https://doi.org/10.1016/j.envexpbot.2018.07.021
Kopsell, D. A., & Sams, C.E. 2013. Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. Journal of the American Society of Horticultural Science, 138, 31–37. https://doi.org/10.21273/JASHS.138.1.31
Kopsell, D. A., Pantanizopoulos, N. I., Sams, C. E., & Kopsell, D. E. 2012. Shoot tissue pigment levels increase in “Florida Broadleaf” mustard (Brassica juncea L.) microgreens following high light treatment. Scientia Horticulturae, 140, 96–99. https://doi.org/10.1016/j.scienta.2012.04.004.
Kopsell, D. A., Pantanizopoulos, N. I., Sams, C. E., & Kopsell, D. E. 2012. Shoot tissue pigment levels increase in “Florida Broadleaf” mustard (Brassica juncea L.) microgreens following high light treatment. Scientia Horticulturae, 140, 96–99. https://doi.org/10.1016/j.scienta.2012.04.004.
Kopsell, D.A., Sams, C.E., Barickman, T.C. & Morrow, R.C. 2014. Sprouting broccoli accumulate higher concentrations of nutritionally important metabolites under narrow-band light-emitting diode lighting J. Amer. Soc. Hort. Sci. 139 469 477. https://doi.org/10.21273/JASHS.139.4.469
Kyriacou, M. C., De Pascale, S., Kyratzis, A., & Rouphael, Y. 2017. Microgreens as a component of space life support systems: A cornucopia of functional food. Frontiers in Plant Science, 8–11. https://doi.org/10.3389/fpls.2017.01587
Kyriacou, M. C., Rouphael, Y., Di Gioia, F., Kyratzis, A., Serio, F., Renna, M., … Santamaria, P. 2016. Micro-scale vegetable production and the rise of microgreens. Trends in Food Science and Technology, 57A, 103– 115. https://doi.org/10.1016/j.tifs.2016.09.005
Li, Q., & Kubota, C. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany, 67(1), 59–64. https://doi.org/10.1016/j.envexpbot.2009.06.011
Lin, K. H., Huang, M. Y., Huang, W. D., Hsu, M. H., Yang, Z. W., & Yang, C. M. 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. Var. Capitata). Scientia Horticulturae, 150, 86–91. https://doi.org/10.1016/j.scienta.2012.10.002.
Lobiuc, A., Vasilache, V., Oroian, M., Stoleru, T., Burducea, M., Pintilie, O., & Zamfirache, M-M. 2017. Blue and red LED illumination improves growth and bioactive compounds contents in acyanic and cyanic Ocimum basilicum L. microgreens. Molecules, 22, 2111. https://doi.org/10.3390/molecules22122111.
Loedolff, B., Brooks, J., Stander, M., Peters, S., & Kossmann, J. 2017. High light bio-fortifcation stimulates de novo synthesis of resveratrol in Diplotaxis tenuifolia (wild rocket) microgreens. Functional Foods in Health and Disease, 7, 859–872. https://doi.org/10.31989/ffhd.v7i11.380.
Massa, G.D., H.H. Kim, R.M. Wheeler, and C.A. Mitchell. 2008. Plant productivity in response to LED lighting. HortScience 43:1951–1956. https://doi.org/10.21273/HORTSCI.43.7.1951.
Morrow, R. C. 2008. LED lighting in horticulture. HortScience, 43(7), 1947–1950. https://doi.org/10.21273/hortsci.43.7.1947
Niroula, A., Khatri, S., Timilsina, R., Khadka, D., Khadka, A., & Ojha, P. 2019. Profile of chlorophylls and carotenoids of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) microgreens. Journal of Food Science and Technology, 56, 2758–2763.
Ohashi-Kaneko, K., Tarase, M., Noya, K. O. N., Fujiwara, K., & Kurata, K. 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. In Environmental Control in Biology (Vol. 45, Issue 3, pp. 189–198). https://doi.org/10.2525/ecb.45.189
Palmitessa, O.D.–Renna, M.–Crupi, P.–Lovece, A.–Corbo, F.–Santamaria, P. 2020. Yield and quality characteristics of Brassica microgreens as affected by the NH4: NO3 molar ratio and strength of the nutrient solution. Foods, 9(5), 677. https://doi.org/10.3390/foods9050677
Pennisi, G., Blasioli, S., Cellini, A., Maia, L., Crepaldi, A., Braschi, I., Spinelli, F., Nicola, S., Fernandez, J. A., Stanghellini, C., Marcelis, L. F. M., Orsini, F., & Gianquinto, G. 2019. Unraveling the role of red:Blue LED lights on resource use efficiency and nutritional properties of indoor grown sweet basil. Frontiers in Plant Science, 10(March), 1–14. https://doi.org/10.3389/fpls.2019.00305
Pinto, E., Almeida, A. A., Aguiar, A. A., & Ferreira, I. M. 2015. Comparison between the mineral profile and nitrate content of microgreens and mature lettuces. Journal of Food Composition and Analysis, 37, 38–43. https://doi.org/10.1016/j.jfca.2014.06.018
Rajan, P., Lada, R.R. and MacDonald, M.T. 2019. Advancement in indoor vertical farming for microgreen production. American Journal of Plant Sciences, 10, 1397-1408. https://doi.org/10.4236/ajps.2019.108100.
Renna, M.; Gioia, F.D.; Leoni, B.; Mininni, C.; Santamaria, P. 2017. Culinary assessment of self-produced microgreens as basic ingredients in sweet and savory dishes. J. Culin. Sci. Technol, 15, 126–142.
Riggio, G. M., Jones, S. L., & Gibson, K. E. 2019b. Risk of human pathogen internalization in leafy vegetables during lab-scale hydroponic cultivation. Horticulturae, 5, 1–22. https://doi.org/10.3390/horticulturae5010025
Riggio, G. M., Wang, Q., Kniel, K. E., & Gibson, K. E. 2019a. Microgreens-A review of food safety considerations along the farm to fork continuum. International Journal of Food Microbiology, 290, 76–85. https://doi.org/10.1016/j.ijfoodmicro.2018.09.027
Sams, C. E., Kopsell, D., & Morrow, R. C. 2016. Light quality impacts on growth, flowering, mineral uptake and petal pigmentation of marigold. Acta Horticulturae, 1134, 139–145. https://doi.org/10.17660/ActaHortic.2016.1134.19
Samuolienė, G., Brazaitytė, A., Jankauskienė, J., Viršilė, A., Sirtautas, R., Novičkovas, A., ... & Duchovskis, P. 2013. LED irradiance level affects growth and nutritional quality of Brassica microgreens. Central European Journal of Biology, 8(12), 1241-1249. https://doi.org/10.2478/s11535-013-0246-1.
Samuolienė, G., Urbonavičiūtė, A., Brazaitytė, A., Šabajevienė, G., Sakalauskaitė, J., & Duchovskis, P. 2011. The impact of LED illumination on antioxidant properties of sprouted seeds. Open Life Sciences, 6(1), 68-74. https://doi.org/10.2478/s11535-010-0094-1.
Samuolienė, G., Viršilė, A., Brazaitytė, A., Jankauskienė, J., Sakalauskienė, S., Vaštakaitė, V., Novičkovas, A., Viškelienė, A., Sasnauskas, A., & Duchovskis, P. 2017. Blue light dosage affects carotenoids and tocopherols in microgreens. Food Chemistry, 228, 50–56. https://doi.org/10.1016/j.foodchem.2017.01.144
Simanavicˇius, L., & Virsˇile, A. 2018. The effects of led lighting on nitrates, nitrites and organic acids in tatsoi. Research for Rural Development, 2(2), 95–99. https://doi.org/10.22616/rrd.24.2018.057
Stoleru, T., Ionitᾰ, A., & Zamfirache, M. 2016. Microgreens—A new food product with great expectations. Romanian Journal of Biology, 61, 7–16
Treadwell D, Hochmuth R, Landrum L, Laughlin W. 2010. Microgreens: A new specialty crop. Gainesville, FL: University of Florida IFAS Extension HS1164.
Turner, E. R., Luo, Y., & Buchanan, R. L. 2020. Microgreen nutrition, food safety, and shelf life: A review. Journal of Food Science, 85(4), 870–882. https://doi.org/10.1111/1750-3841.15049
Vaštakaitė, V., Viršilė, A., Brazaitytė, A., Sirtautas, R., & Novičkovas, A. 2015. The effect of blue light dosage on growth and antioxidant properties of microgreens. 34, 25–36.
Verdaguer D, Jansen MAK, Llorens L, Morales L, Neugart S. 2016. UV-A radiation effects on higher plants: Exploring the known unknown. Plant Science 255: 72-81. https://doi.org/10.1016/j.plantsci.2016.11.014
Verlinden, S. 2020. Microgreens: definitions, product types, and production practices. Hortic. Rev. (Am. Soc. Hortic. Sci.) 47:85–124.
Wallin C. 2013. Growing microgreens for profit. Anacortes, WA: Headstart Publishing, LLC.
Walters, R. G. 2005. Towards an understanding of photosynthetic acclimation. Journal of Experimental Botany, 56, 435–447. https://doi.org/10.1093/jxb/eri060.
Wang, H.; Gui, M.; Tian, X.; Xin, X.; Li, J. 2017. Effects of UV-B on vitamin C, phenolics, flavonoids and their related enzyme activities in mung bean sprouts (Vigna radiata). Int. J. Food Sci. Technol, 52, 827–833.
Wu, M. C., Hou, C. Y., Jiang, C. M., Wang, Y. T., Wang, C. Y., Chen, H. H., & Chang, H. M. 2007. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chemistry, 101(4), 1753–1758. https://doi.org/10.1016/j.foodchem.2006.02.010
Xiao, Z., Codling, E. E., Luo, Y., Nou, X., Lester, G. E., & Wang, Q. 2016. Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. Journal of Food Composition and Analysis, 49, 87–93. https://doi.org/10.1016/j.jfca.2016.04.006
Xiao, Z., Rausch, S. R., Luo, Y., Sun, J., Yu, L., Wang, Q., Stommel, J. R. 2019. Microgreens of Brassicacae: Genetic diversity of phytochemical concentrations and antioxidant capacity. LWT – Food Science and Technology, 101, 731–737.
Xiao, Z.–Lester, G.E.–Luo, Y.–Wang, Q. 2012. Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. Journal of agricultural and Food Chemistry, 60(31), 7644-7651. https://doi.org/10.1021/jf300459b
Ying, Q., Kong, Y., Jones-Baumgardt, C., & Zheng, Y. 2020. Responses of yield and appearance quality of four Brassicaceae microgreens to varied blue light proportion in red and blue light-emitting diodes lighting. Scientia Horticulturae, 259, 108857. https://doi.org/10.1016/j.scienta.2019.108857.
Yoshida, H., Mizuta, D., Fukuda, N., Hikosaka, S., & Goto, E. 2016. Effects of varying light quality from single-peak blue and red light-emitting diodes during nursery period on flowering,photosynthesis,growth,and fruit yield of everbearing strawberry. Plant Biotechnology, 33(4), 267–276. https://doi.org/10.5511/plantbiotechnology.16.0216a
Zou T, Huang C, Wu P et al. 2020. Optimization of artificial light for spinach growth in plant factory based on orthogonal test. Plants 9: 1-14. https://doi.org/10.3390/plants9040490
DOI: https://doi.org/10.24198/kultivasi.v21i2.39931
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Kultivasi Indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.