Development of adaptive rice variety to non-tidal swamp: Growth evaluation of backcrossed progenies (BC1F1) and its parents, Inpago 5 and Inpara 8

Nabilah Amiros, Rujito Agus Suwignyo, Mery Hasmeda, Fikri Adriansyah, Entis Sutisna Halimi, Erizal Sodikin

Abstract


Abstract

Rice (Oryza sativa L.) cultivation in non-tidal swamp is severely constrained by abiotic stresses, i.e., submerged stress in the vegetative phase and drought stress in the generative phase. The development of rice varieties that have dual-tolerant to those abiotic stresses can improve adaptability and increase productivity. Efforts to obtain adaptive varieties under those abiotic stress conditions are being carried out by selecting the parents and crossing them, and has resulted in the population of BC1F1. The research was carried out on April – June 2021 at greenhouse of the Agriculture Faculty, Sriwijaya University. The study aimed to evaluate the growth of BC1F1 progenies and parental varieties, Inpago 5 (live well in drought condition) and Inpara 8 (inherited Sub1 gene). The results showed that the vegetative growth (plant height and number of total tillers) of BC1F1 was influenced by genetics of the parents. While generative growth parameters, Inpago 5, as a recipient parent, had the highest number of total spikelets per panicle (181.42 grains), the lowest percentage of sterile spikelets (25.05%) and the lowest biomass dry weight (27.88 g). Inpara 8, as a donor parent, had the highest average number of productive tillers (8.34 tillers), took the longest time to flower (76 days), and the shortest time to harvest (115 days). Then, BC1F1 got the highest average number of total spikelets per plant (1348.2 grains), weight of 1000 grains (25.49 g), and grains dry weight (9.71 g).  Based on study, the most growth traits of BC1F1 were genetically influenced by the parents, indicated a segregation from the parents. The plants will be used for second backcrossing (BC2F1) and a molecular selection using Marker-Assisted Backcrossing (MABC) method to obtain plants that have Sub1 gene and the closest characteristic to recipient parent (Inpago 5).

Keywords: dual tolerance, Inpago 5, Inpara 8, Oryza sativa

 

Abstrak

Budidaya padi (Oryza sativa L.) di lahan rawa lebak sangat terkendala dengan cekaman abiotik cekaman terendam pada fase vegetatif dan cekaman kekeringan pada fase generatif. Pengembangan varietas padi yang memiliki dual tolerant terhadap cekaman abiotik tersebut dapat memperbaiki daya adaptasi dan meningkatkan produktivitasnya. Upaya untuk mendapatkan variietas adaptif dengan kondisi cekaman abiotik tersebut sedang dilakukan dengan melakukan seleksi tetua dan menyilangkannya, dan telah menghasilkan aksesi BC1F1. Penelitian dilaksanakan pada bulan April – Juni 2021 di greenhouse Fakultas Pertanian, Universitas Sriwijaya. Tulisan menyampaikan hasil evaluasi pertumbuhan progeni BC1F1 dan kedua varietas induk, Inpago 5 dan Inpara 8. Hasil penelitian menunjukkan pertumbuhan vegetatif (tinggi tanaman dan jumlah anakan total) BC1F1 dipengaruhi oleh genetik dari kedua induk. Sementara parameter pertumbuhan generatif, Inpago 5 (induk resipien) memiliki jumlah gabah total per malai tertinggi sebanyak 181,42 butir; persentase gabah hampa terendah sebesar 25,05%; bobot kering biomassa terendah sebesar 27,88 g. Inpara 8 (induk donor) memiliki rata-rata jumlah anakan produktif terbanyak (8,34 anakan), waktu berbunga terlama (76 hari), dan waktu panen tercepat (115 hari). Kemudian BC1F1 memiliki jumlah gabah total per rumpun tertinggi sebanyak 1348 butir), bobot 1000 butir gabah tertinggi (25,49 g), dan berat kering gabah (9,71 g). Berdasarkan hasil penelitian, sebagian besat karakteristik pertumbuhan populasi BC1F1 dipengaruhi secara genetik oleh kedua induk yang mengindikasi adanya segregasi sifat dari keduanya. Tanaman akan digunakan pada silang balik generasi kedua (BC2F1) dan diseleksi secara molekular menggunakan metode Marker-Assisted Backcrossing (MABC) untuk mendapatkan tanaman terbaik yang memiliki gen Sub1 dan karakter agronomi paling dekat dengan Inpago 5.


Kata Kunci: dual toleransi, Inpago 5, Inpara 8, Oryza sativa


Keywords


dual tolerance; Inpago 5; Inpara 8; Oryza sativa

Full Text:

PDF

References


Adriansyah, F., M. Hasmeda, R.A. Suwignyo, E.S. Halimi, F. Fatimah, I. Wibisono, and U. Sarimana. 2022. Selection of Sub1 locus for submergence-tolerant introgression in a backcrossing of South Sumatra rice based on SSR markers. Sains Malaysiana, 51(3): 695–706. doi: 10.17576/jsm-2022-5103-05.

Adriansyah, F., M. Hasmeda, R.A. Suwignyo, E.S. Halimi, and U. Sarimana. 2021. Improvement of the submergence tolerance of local South Sumatran rice through the introgression of the Sub1 gene by using marker-assisted selection. Sabrao Journal of Breeding and Genetics, 53(4): 575–91. doi: https://doi. org/10.54910/sabrao2021.53.4.3.

Akhmadi, G., B.S. Purwoko, I.S. Dewi, and D. Wirnas. 2017. Selection of agronomic traits for selection of dihaploid rice lines. J. Agron. Indonesia, 45: 1–8.

Aulia, S. L. 2021. Pembentukan populasi BC1F1 seleksi MABC (Marker Assisted Backcrossing) dan uji toleransi cekaman terendam BC1F1 dari hasil persilangan varietas inpago 5 dan inpara 8. [TESIS] Pascasarjana Universitas Sriwijaya.

BPS Indonesia. 2022. Statistical Yearbook of Indonesia 2022. Jakarta, BPS Statistic Indonesia

Chozin, M., S. Sudjatmiko, and M.F. Barchia. 2017. Genetic variability and traits association analyses on F2 generations for determination of selection criteria in Indonesian inland swamp rice breeding.” Australia Journal of Crop Science, 11(05): 535–41. doi: 10.21475/ajcs.17.11.05.p317.

Fukao, T., E. Yeung, and J. Bailey-serres. 2011. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. The Plant Cell, 23: 412–27. doi: 10.1105/tpc.110.080325.

Gao, H., W. Wang, Y. Wang, and Y. Liang. 2019. Molecular mechanisms underlying plant architecture and its environmental plasticity in rice. Molecular Breeding, 39(12): 167. doi: 10.1007/s11032-019-1076-2.

Guo, T., Q. Mu, J. Wang, A.E. Vanous, A. Onogi, H. Iwata, X. Li, and J. Yu. 2020. Dynamic effects of interacting genes underlying rice flowering-time phenotypic plasticity and global adaptation. Genome Research, 30(5): 673–83. doi: 10.1101/gr. 255703.119.

IRRI. 2013. Standard Evaluation System for Rice. Philippines, International Rice Research Institute

Jeong, K., C.C. Julia, D.L.E. Waters, O. Pantoja, M. Wissuwa, S. Heuer, L. Liu, and T.J. Rose. 2017. Remobilisation of phosphorus fractions in rice flag leaves during grain filling: implications for photosynthesis and grain yields. PLoS ONE, 12(11): 1–15. doi: 10.1371/journal.pone.0187521.

Kartina, N., B.P. Wibowo, Y. Widyastuti, I.A. Rumanti, and Satoto. 2016. Correlation and path analysis for agronomic traits in hybrid rice. Jurnal Ilmu Pertanian Indonesia, 21(2): 76–83. doi: 10.18343/jipi.21.2.76.

Lakitan, B., B. Hadi, S. Herlinda, E. Siaga, L.I. Widuri, K. Kartika, L. Lindiana, Y. Yunindyawati, and M. Meihana. 2018. Recognizing farmers’ practices and constraints for intensifying rice production at riparian wetlands in Indonesia. NJAS - Wageningen Journal of Life Sciences, 85: 10–20. doi: 10.1016/j.njas.2018.05.004.

Liu, F., P. Wang, X. Zhang, X. Li, X. Yan, D. Fu, and G. Wu. 2018. The genetic and molecular basis of crop height based on a rice model. Planta, 247(1). doi: 10.1007/s00425-017-2798-1.

Mathan, J., A. Singh, and A. Ranjan. 2021. Sucrose transport and metabolism control carbon partitioning between stem and grain in rice. Journal of Experimental Botany, 72(12): 4355–72. doi: 10.1093/jxb/ erab066.

Ningsih, R.D., M. Yasin, and A. Noor. 2020. Rice productivity on tidal swampland in the agricultural assisitance area program in Barito Kuala Regency South Kalimantan. in IOP Conference Series: Earth and Environmental Science, 484(1). doi: 10.1088 /1755-1315/484/1/012123.

Oladosu, Y., M.Y. Rafii, F. Arolu, S.C. Chukwu, I. Muhammad, I. Kareem, M.A. Salisu, and I.W. Arolu. 2020. Submergence tolerance in rice: review of mechanism, breeding and, future prospects. Sustainability (Switzerland), 12(4): 1–16. doi: 10.3390 /su12041632.

Ren, M., M. Huang, H. Qiu, Y. Chun, L. Li, A. Kumar, J. Fang, J. Zhao, H. He, and X. Li. 2021. Genome-wide association study of the genetic basis of effective tiller number in rice. Rice, 14(1). doi: 10.1186/s12284-021-00495-8.

Rumanti, I.A., Y. Nugraha, R.H. Wening, Z.J.C. Gonzaga, Suwarno, A. Nasution, D. Kusdiaman, and E.M. Septiningsih. 2016. Development of high-yielding rice varieties suitable for swampy lands in Indonesia. Plant Breeding and Biotechnology, 4(4): 413–25. doi: 10.9787/pbb.2016.4.4.413.

Rusdan, R. 2019. Respon Beberapa Varietas Padi (Oryza Sativa) Terhadap Cekaman Kekeringan Pada Fase Generatif. [SKRIPSI] Universitas Sriwijaya.

SAS, Institute Inc. 2004. SAS/STAT User’s Guide Version 9, 4th Edition. Statistical Analysis Institute Inc., Cary, North Carolina.

Shin, N.H., J.H. Han, K.T.X. Vo, J. Seo, I.P. Navea, S.C. Yoo, J.S. Jeon, and J.H. Chin. 2022. Development of a temperate climate-adapted indica multi-stress tolerant rice variety by pyramiding quantitative trait loci. Rice, 15(1). doi: 10.1186/s12284-022-00568-2.

Singh, A., J. Carandang, Z.J.C. Gonzaga, B.C.Y. Collard, A.M. Ismail, and E.M. Septiningsih. 2017. Identification of QTLs for yield and agronomic traits in rice under stagnant flooding conditions. Rice, 10(1): 1–18. doi: 10.1186/s12284-017-0154-5.

Singh, S., S. Prasad, V. Yadav, A. Kumar, B. Jaiswal, A. Kumar, N.A. Khan, and D.K. Dwivedi. 2018. Effect of drought stress on yield and yield components of rice (Oryza sativa L .) genotypes. International Journal of Current Microbiology and Applied Sciences, (7): 2752–59.

Sugiura, K., T. Oi, T. Tanaka, A. Hamagashira, R. Ouk, M. Nakamura, Y. Ide, K. Tsuda, A. Ito, and A. Yamauchi. 2022. Resistance factors of pecky rice incidence caused by the rice stink bugs (Leptocorisa chinensis, Nezara viridula) in rice line CRR-99-95W. Plant Production Science, 25(2): 172–82. doi: 10.1080/1343943X.2022.2033127.

Sulaiman, A.A., Y. Sulaeman, and B. Minasny. 2019. A Framework for the development of wetland for agricultural use in Indonesia. Resources, 8(1): 1–16. doi: 10.3390/ resources8010034.

Suwignyo, R.A., I. Irmawati, F. Hose, and S.L. Aulia. 2021. Development of rice varieties adaptive to non-tidal swampland using MABC: growth characteristics of parent plant and F1 result. in IOP Conference Series: Earth and Environmental Science. Vol. 741: 4-9.

Suwignyo, R.A. 2016. “Efforts and strategy to improve productivity of suboptimal land in Indonesia. in ICCAE 5th Open Seminar in AY2016, International Center for Research and Education in Agriculture (ICREA). December 13 2016. Nagoya University, Nagoya Japan.

Takai, T., M. Sakata, N.M. Rakotoarisoa, N.T. Razafinarivo, T. Nishigaki, H. Asai, T. Ishizaki, and Y. Tsujimoto. 2021. Effects of quantitative trait locus MP3 on the number of panicles and rice productivity in nutrient-poor soils of Madagascar.” Crop Science, 61(1): 519–28. doi: 10.1002/ csc2.20344.

Tang, L., Z.J. Xu, and W.F. Chen. 2017. Advances and prospects of super rice breeding in China. Journal of Integrative Agriculture, 16(5): 984–91. doi: 10.1016/ S2095-3119(16)61604-0.

Tilahun, Z.M. 2019. Effe ct of Row Spacing and Nitrogen Fertilize levels on yield and yield components of upland rice varieties. World Scientific News, 116: 180–93.

Tirtana, A., B. S. Purwoko, I. S. Dewi, and Trikoesoemaningtyas. 2021. Selection of upland rice lines in advanced yield trials and response to abiotic stress. Biodiversitas, 22(10): 4694–4703. doi: 10.13057/biodiv/d221063.

Tiwari, A., S. Prasad, G. Kumar, A. Kumar, A. Mishra, K.N. Singh, and A. Tiwari. 2017. Physio-molecular approach towards developing rice variety for dual resistance (drought and submergence) under rainfed lowland ecosystem. Journal of Pharmacognosy and Phytochemistry, 1: 6–12.

Vijayaraghavareddy, P., Y. Xinyou, P.C. Struik, U. Makarla, and S. Sreeman. 2020. Responses of lowland, upland and aerobic rice genotypes to water limitation during different phases. Rice Science, 27(4): 345–54. doi: 10.1016/j.rsci.2020.05.009.

Wang, J., B. Wu, K. Lu, Q. Wei, J. Qian, Y. Chen, and Z. Fang. 2019. The amino acid permease 5 (Osaap5) regulates tiller number and grain yield in rice. Plant Physiology, 180(2): 1031–45. doi: 10.1104/ pp.19.00034.

Xu, K. and D. J. Mackill. 1996. A major locus for submergence tolerance mapped on rice chromosome 9. Molecular Breeding, 2(3): 219–24. doi: 10.1007/BF00564199.

Zaman, N.K., M.Y. Abdullah, S. Othman, and N.K. Zaman. 2018. Growth and physiological performance of aerobic and lowland rice as affected by water stress at selected growth stages. Rice Science, 25(2): 82–93. doi: 10.1016/j.rsci.2018.02.001.




DOI: https://doi.org/10.24198/kultivasi.v21i3.41072

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Kultivasi Indexed by:

       width=    

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


View Jurnal Kultivasi Stat