Determining the potential of sonic bloom in inducing rice resistance (Oryza sativa) against the attack of bacterial leaf blight disease caused by Xanthomonas oryzae

Azka Algina, Syifaa Yunita Yulianti, Rohimatus Syamsyiah, Veadora Yasminingrum, Bergas Frenli Nur Vendi, Vira Kusuma Dewi

Abstract


Xanthomonas oryzae which causes bacterial leaf blight disease is one of the main pathogens that attack rice crops. The threat of losing rice yields due to X. oryzae needs to be avoided by implementing appropriate control strategies. Sonic bloom has the potential to induce plant immunity against diseases. Hence, this study aimed to examine the potential of sonic bloom in inducing rice resistance to bacterial leaf blight. The experiment was arranged in a Randomized Block Design (RBD) with five treatments and three replications. The treatments consisted of several frequencies, namely PR (0.5 - 1 kHz and inoculated with X. oryzae), PS (3 - 5 kHz and inoculated with X. oryzae), PT (7 - 10 kHz and inoculated with X. oryzae), KP (inoculated with X. oryzae without sonic bloom treatment), KN (no bacterial inoculation and sonic bloom treatment). The results showed that all sonic bloom treatments (LF, MF, HF) had a significant effect on increasing the intensity of BLB disease in rice plants. This showed that sonic bloom in this range does not have the potential to induce rice plant resistance to BLB. Further research to find out the causes of this is needed.

Keywords


bacterial leaf blight; disease intensity; cicadas; Xanthomonas oryzae.

Full Text:

PDF

References


Ai N, Rumbaya J, Anggini P, Supit P, Ludong D. 2021. Potential of Sonic bloom Method to Increase Plant Growth. Jurnal MIPA, 10(2): 76-80.

Anas A, Kadarisman N. 2018. The effect of garengpung (Dundubia manifera) peak frequency manipulated sound exposure 3500 hz towards the rice (Oryza sativa) growth and productivity. Jurnal Ilmu Fisika dan Terapannya, 7(4): 277–286.

Balai Besar Peramalan Organisme Pengganggu Tumbuhan. 2021. Forecast of Attacks by the Main Pests of Rice, Corn And Soybeans in Indonesia Planting Season 2021. Edisi ke-1. Kementerian Pertanian Indonesia. Bekasi. Indonesia.

Bhandawat A, Jayaswall K. 2022. Biological relevance of sound in plants. Environmental and Experimental Botany, 200 (104919): 1-11. https://doi.org/10.1016/j.envexpbot.2022.104919

Bianco MI, Toum L, Yaryura PM, Mielnichuk N, Gudesblat GE, Roeschlin R, Marano MR, Ielpi L, Vojnov AA. 2016. Xanthan pyruvilation is essential for the virulence of Xanthomonas campestris pv. campestris. Molecular Plant-Microbe Interactions, 29(9): 688–699. https://doi.org/10.1094/MPMI-06-16-0106-R

Deguine JP, Aubertot JN, Flor RJ, Lescourret F, Wyckhuys KAG, Ratnadass A. 2021. Integrated pest management: good intentions, hard realities. A review. Agronomy for Sustainable Development, 41(3). https://doi.org/10.1007/s13593-021-00689-w

Han SW, Park CJ, Lee SW, Ronald PC. 2008. An efficient method for visualization and growth of fluorescent Xanthomonasoryzaepv. oryzae in planta. BMC Microbiology, 8(164): 1–9. https://doi.org/10.1186/1471-2180-8-164

Haskell DG. 2018. The Songs of Trees: Stories from Nature’s Great Connectors. Penguin Publishing Group.

Hassanien RH, Hou T, Li Y, Li B. 2014. Advances in Effects of Sound Waves on Plants. Journal of Integrative Agriculture, 13(2): 335-348. doi:10.1016/s2095-3119(13)60492-x

Hendrawan Y, Rizky A, Susilo B, Prasetyo J, Damayanti R. 2020. The effect of Javanese gamelan music on the growth of Chinese Broccoli. Pertanika Journal Science & Technology, 28(1): 69 – 90.

Joshi N, Nautiyal P, Papnai G, Supyal V, Singh K. 2019. Render a Sound Dose: Effects of Implementing Acoustic Frequencies on Plants, Physiology, Biochemistry and Genetic Makeup. International Journal of Chemical Studies, 7(5): 2668-2678.

Juergensmeyer EA. 2004. Effect of vibration on bacterial growth and antibiotic resistance. May 2001.

Kurniawati S, Astuti Y, Hidayat YS, Susanti EY. 2021. Implementation of Eco-friendly Technologies to Control Bacterial Leaf Blight of Rice Disease (Xanthomonas oryzae pv. oryzae). IOP Conference Series: Earth and Environmental Science, 715(1): 1–8. https://doi.org/10.1088/1755-1315/715/1/012041

Melkozernov AN, Blankenship RE. 2006. Photosynthetic Functions of Chlorophylls. In Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications (pp. 397–412). https://doi.org/10.1007/1-4020-4516-6_28

Nejat N, Mantri N. 2017. Plant immune system: Crosstalk between responses to biotic and abiotic stresses the missing link in understanding plant defence. Current Issues in Molecular Biology, 23: 1–16. https://doi.org/10.21775/cimb.023.001

Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. 2016. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Frontiers in Public Health, 4(July): 1–8. https://doi.org/10.3389/fpubh.2016.00148

Nuraisah A, Suherman C, Ariyanti M, Nuraini A, Soleh MA. 2019. Growth, yield and physiological characteristics of rice treated with biofertilizer in immature oil palm plantations. Jurnal Kultivasi, 18(3): 1004 – 1009.

Prasetyo, Wicaksono D. 2019. Design of a tool to promote vegetable growth and productivity based on sonic bloom and monochromatic light. Jurnal Keteknikan Pertanian Tropis dan Biosistem, 7(1): 1-7.

Putri RE, Arlius F, Wulandari E, Fahmy K. 2021. Utilization of sonic bloom technology to increase mustard plant productivity. Jurnal Teknologi Pertanian Andalas, 25(2): 192-204.

Sawinski K, Mersmann S, Robatzek S, Bohmer M. 2013. Guarding the green: pathways to stomatal immunity Katja. Molecular Plant-Microbe Interactions, 26(6): 626–632. https://doi.org/http://dx.doi.org/10.1094/MPMI-12-12-0288-CR.

Shah A, Raval A, Kothari V. 2016. Sound stimulation can influence microbial growth and production of certain key metabolites. Journal of Microbiology, Biotechnology and Food Sciences, 5(4): 330–334. https://doi.org/10.15414/jmbfs.2016.5.4.330-334

Shaobin G, Wu Y, Li K, Li S, Ma S, Wang Q, Wang R. 2010. A pilot study of the effect of audible sound on the growth of Escherichia coli. Colloids and Surfaces B: Biointerfaces, 78(2): 367–371. https://doi.org/10.1016/j.colsurfb.2010.02.028

Sirichandra C, Wasilewska A, Vlad F, Valon C, Leung J. 2009. The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. Journal of Experimental Botany, 60(5): 1439–1463. https://doi.org/10.1093/jxb/ern340

Suganda T. 2020. Plant Disease Control Tactics and Management Strategies. Edisi ke-1. Unpad Press. Sumedang. Indonesia.

Sumadji AR, Purbasari K. 2018. Indeks stomata, panjang akar dan tinggi tanaman sebagai indikator kekurangan air pada tanaman padi varietas IR64 dan Ciherang. AGRI-TEK, 19(2): 82 – 85.

Vikal Y, Bhatia D. 2017. Genetics and Genomics of Bacterial Blight Resistance in Rice. IntechOpen. London. Inggris.

Ying JCL. 2009. Experimental investigation on the effects of audible sound to the growth of Aspergillus Spp. Modern Applied Science, 3(4): 124–127. https://doi.org/10.5539/mas.v3n4p137




DOI: https://doi.org/10.24198/kultivasi.v22i3.44357

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Jurnal Kultivasi Indexed by:

       width=    

 

 

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


View Jurnal Kultivasi Stat