Genetic parameters of yield component and yield in M1 rice (Oryza sativa L.) generation irradiated with gamma-ray
Abstract
Keywords
Full Text:
PDFReferences
Adhikari BN, Joshi BP, Shrestha J, Bhatta NR. 2018. Genetic variability, heritability, genetic advance and correlation among yield and yield components of rice (Oryza sativa L.). Journal of Agriculture and Natural Resources, 1: 149–160. https://doi.org/10.3126/janr.v1i1.22230
Anbanandan V, Eswaran R. 2018. Genetic variability studies in rice genotypes. European Journal of Biotechnology and Bioscience, 6: 74–75.
Ansari A, Pranesti A, Telaumbanua M, Alam T, Taryono, Wulandari RA, Nugroho BDA, Supriyanta. 2023. Evaluating the effect of climate change on rice production in Indonesia using multimodelling approach. Heliyon, 9: 1–15. https://doi.org/10.1016/j.heliyon.2023.e19639
Archana RS, Rani MS, Vardhan KMV, Fareeda G. 2018. Correlation and path coefficient analysis for grain yield and yield components in rice (Oryza sativa L.). International Journal of Chemical Studies, 6: 189–195. https://doi.org/10.22271/chemi.2020.v8.i2n.8888
Arifin B, Azam N, Martianto D, Karlina L. 2019. The future of Indonesian food consumption. Jurnal Ekonomi Indonesia, 8: 71–102. https://doi.org/10.52813/jei.v8i1.13
Ashe G, Chanyalew S, Tesso B. 2023. Genetic variability , heritability and genetic advance among yield and yield related traits of advanced Tef [Eragrostis tef ( Zucc .) Trotter ] breeding lines, 15: 35. https://doi.org/10.5897/IJGMB2023.0226
Ashraf ATMH, Rahman MM, Hossain MM, Sarker U. 2020. Study of correlation and path analysis in the selected okra genotypes. Asian Research Journal of Agriculture, 12: 1–11. https://doi.org/10.9734/arja/2020/v12i430087
Ata-Ul-Karim ST, Begum H, Lopena V, Borromeo T, Virk P, Hernandez JE, Gregorio GB, Collard BCY, Kato Y. 2022. Genotypic variation of yield-related traits in an irrigated rice breeding program for tropical Asia. Crop and Environment, 1: 173–181. https://doi.org/10.1016/j.crope.2022.08.004
Balla MY, Ibrahim SE. 2017. Genotypic correlation and path coefficient analysis of soybean [Glycine max (L.) Merr.] for yield and its components. Agricultural Research and Technology, 7: 3–7. https://doi.org/10.19080/ARTOAJ.2017.07.555715
Begum HA, Sobhan MA. 1991. Genetic variability, heritability and correlation study in C. capsularis. Bangladesh J. Jute Fibre Res., 16: 113–118.
BPS. 2024. Paddy Harvested Area and Production in Indonesia 2023 (Final Figures). BPS-Statistics Indonesia, Jakarta.
Brock RD. 1971. The role of induced mutations in plant improvement. Radiation Botany, 11: 181–196. https://doi.org/10.1016/S0033-7560(71)90273-0
Burton GW, DeVane EH. 1953. Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material. Agronomy Journal, 478–481. https://doi.org/10.2134/agronj1953.00021962004500100005x
Chakravarti SK, Singh S, Kumar H. 2014. Studies on genetic parameters in induced micro-mutation population of aromatic rice (Oryza sativa L.) in M2 and M3 generations. International Journal of Agricultural and Statistical Sciences, 10: 471–479.
Chavan S, Bhadru D, Swarnalatha V, Mallaiah B. 2020. Studies on genetic parameters, correlation and path analysis for yield and yield attributing traits in sweet corn (Zea mays L. saccharata). International Journal of Current Microbiology and Applied Sciences, 9: 1725–1734. https://doi.org/10.20546/ijcmas.2020.907.199
Choudhary AK, Haider ZA, Mishra SB, Prasad K, Bhushan S, Kumar S, Choudhary VK, Bhushan M, Prasad JP. 2018. Assessment of genetic variability for yield and yield attributing traits in F2 and F3 population of rice (Oryza sativa L.) cross. Current Journal of Applied Science and Technology, 31: 1–5. https://doi.org/10.9734/cjast/2018/45875
Chozin M, Sumardi, Sudjamiko S, Barchia MF. 2017. Genetic variability and traits association analyses on F2 generations for determination of selection criteria in Indonesian inland swamp rice breeding. Australian Journal of Crop Science, 11: 535–541. https://doi.org/10.21475/ajcs.17.11.05.p317
Connor M, de Guia AH, Pustika AB, Sudarmaji, Kobarsih M, Hellin J. 2021. Rice farming in Central Java, Indonesia—adoption of sustainable farming practices, impacts and implications. Agronomy, 11: 1–14. https://doi.org/10.3390/agronomy11050881
Dewey DR, Lu KH. 1959. A correlation and path coefficient analysis components of crested wheat grass seed production. Agronomy Journal, 515–518. https://doi.org/10.2134/agronj1959.00021962005100090002x
Dragov R, Uhr Z, Dimitrov E. 2022. Genetic variability, heritability and genetic advance for important quantitative traits of durum wheat: Part I. Bulgarian Journal of Agricultural Science, 28: 691–698.
Faot MM, Zubaidah S, Kuswantoro H. 2019. Genetic correlation and path analysis of agronomical traits of soybean (Glycine max) lines infected by CpMMV. Biodiversitas, 20: 1496–1503. https://doi.org/10.13057/biodiv/d200602
Faysal ASM, Ali L, Azam MG, Sarker U, Ercisli S, Golokhvast KS, Marc RA. 2022. Genetic variability, character association, and path coefficient analysis in transplant aman rice genotypes. Plants, 11: 1–15. https://doi.org/10.3390/plants11212952
Fehr WR. 1991. Principles of Cultivar Development: Theory and Technique (Vol. 1). IOWA, USA: Macmillan Publishing Company. https://doi.org/10.1097/00010694-198805000-00012
Geleta N, Dagnachew L, Zerihun J. 2019. Correlations and path analysis of some quantitative characters in barley (Hordeum vulgareum L.) landraces in western Oromia, Ethiopia. African Journal of Plant Science, 13: 34–46. https://doi.org/10.5897/ajps2018.1744
Govintharaj P, Manonmani S, Robin S. 2018. Variability and genetic diversity study in an advanced segregating population of rice with bacterial blight resistance genes introgressed. Ciencia e Agrotecnologia, 42: 291–296. https://doi.org/10.1590/1413-70542018423022317
Haryanto TAD, Suwarto, Riyanto A, Susanti D, Farid N, Kantun IN, Suwarno, Zheng SH. 2011. Variability of grain protein content in improved upland rice genotypes and its response to locations. Electronic Journal of Plant Breeding, 2: 200–208.
Hernández-Soto A, Echeverría-Beirute F, Abdelnour-Esquivel A, Valdez-Melara M, Boch J, Gatica-Arias A. 2021. Rice breeding in the new era: Comparison of useful agronomic traits. Current Plant Biology, 27: 1–15. https://doi.org/10.1016/j.cpb.2021.100211
Huang M, Zou Y, Jiang P, Xia B, Ibrahim M, He-jun A. 2011. Relationship between grain yield and yield components in super hybrid rice. Agricultural Sciences in China, 10: 1537–1544. https://doi.org/10.1016/S1671-2927(11)60149-1
Ishak I. 2023. Genetic variability of mutant rice (Oryza sativa) genotype induced by gamma rays. Biodiversitas, 24: 3300–3306. https://doi.org/10.13057/biodiv/d240624
Islam M, Raffi S, Hossain M, Hasan A. 2015. Analysis of genetic variability, heritability and genetic advance for yield and yield associated traits in some promising advanced lines of rice. Progressive Agriculture, 26: 26–31. https://doi.org/10.3329/pa.v26i1.24511
Jangala DJ, Amudha K, Geetha S, Uma D. 2022. Studies on genetic diversity, correlation and path analysis in rice germplasm. Electronic Journal of Plant Breeding, 13: 655–662. https://doi.org/10.37992/2022.1302.081
Johnson HW, Robinson HF, Comstock RE. 1955. Estimates of genetic and environmental variability in soybeans. Agronomy Journal, 47: 314–318. https://doi.org/10.2134/agronj1955.00021962004700070009x
Kanaka KK, Sukhija N, Goli RC, Singh S, Ganguly I, Dixit SP, Dash A, Malik AA. 2023. On the concepts and measures of diversity in the genomics era. Current Plant Biology, 33: 100278. https://doi.org/10.1016/j.cpb.2023.100278
Kartahadimaja J, Utomo SD, Yuliadi E, Salam AK, Warsono, Wahyudi A. 2021. Agronomic characters, genetic and phenotypic diversity coefficients, and heritability of 12 genotypes of rice. Biodiversitas, 22: 1091–1097. https://doi.org/10.13057/biodiv/d220302
Katiyar P, Pandey N, Keshavkant S. 2022. Gamma radiation: A potential tool for abiotic stress mitigation and management of agroecosystem. Plant Stress, 5: 100089. https://doi.org/10.1016/j.stress.2022.100089
Kato H, Li F, Shimizu A. 2020. The selection of gamma-ray irradiated higher yield rice mutants by directed evolution method. Plants, 9: 1–16. https://doi.org/10.3390/plants9081004
Khomphet T, Intana W, Promwee A, Islam SS. 2022. Genetic variability, correlation, and path analysis of Thai commercial melon varieties. International Journal of Agronomy, 2022: 1–6. https://doi.org/10.1155/2022/7877239
Kishore NS, Srinivas T, Nagabhushanam U, Pallavi M, Sameera SK. 2015. Genetic variability, correlation and path analysis for yield and yield components in promising rice (Oryza sativa L.) genotypes. SAARC Journal of Agriculture, 13: 99–108. https://doi.org/10.3329/sja.v13i1.24184
Kumari N, Parmar M. 2020. Correlation and path coefficient analysis for grain yield and yield components in rice (Oryza sativa L.) under aerobic condition. International Journal of Chemical Studies, 8: 927–930. https://doi.org/10.22271/chemi.2020.v8.i2n.8888
Kurniawati S, Chaniago I, Suliansyah I. 2019. Variability and heritability of Sigah brown rice mutants (M3) in vegetative phase. International Journal of Environment, Agriculture and Biotechnology, 4: 1745–1749. https://doi.org/10.22161/ijeab.46.19
Laskar RA, Chaudhary C, Khan S, Chandra A. 2018. Induction of mutagenized tomato populations for investigation on agronomic traits and mutant phenotyping. Journal of the Saudi Society of Agricultural Sciences, 17: 51–60. https://doi.org/10.1016/j.jssas.2016.01.002
Mahantashivayogayya K, Mahendrakumar, lakkundi BS, Kuchunur PH, Vishwanath J. 2016. Genetic variability studies on rice (Oryza sativa L.) mutants for yield and yield components in normal and saline stress soil. Electronic Journal of Plant Breeding, 7: 1162–1168. https://doi.org/10.5958/0975-928X.2016.00162.9
Mandal A, Lal GM, Lavanya GR. 2023. Assessment of genetic variability, correlation and path analysis among rice (Oryza sativa L.) landraces genotypes for grain yield characters under irrigated. International Journal of Environment and Climate Change, 13: 55–65. https://doi.org/10.9734/ijecc/2023/v13i102616
Miller PA, Williams JC, Robinson HF. 1958. Estimates of genotypic and environmental covariances in upland cotton and implications in selection. Agronomy Journal, 50: 126–131. https://doi.org/10.2134/agronj1958.00021962005000030004x
Muhammad I, Rafii MY, Nazli MH, Ramlee SI, Harun AR, Oladosu Y. 2021. Determination of lethal (LD) and growth reduction (GR)doses on acute and chronic gamma-irradiated bambara groundnut [Vigna subterranea (L.) Verdc.] varieties. Journal of Radiation Research and Applied Sciences, 14: 133–145. https://doi.org/10.1080/16878507.2021.1883320
Mulualem T, Alamrew S, Tadesse T, Wegary D. 2018. Correlation and path coefficient analysis for agronomical traits of lowland adapted Ethiopian Sorghum genotypes [Sorghum bicolor (L.) Moench] genotypes. Greener Journal of Agricultural Sciences, 8: 155–159. https://doi.org/10.15580/gjas.2018.8.060718079
Muthuramu S, Ragavan T. 2020. Genotypic correlation and path coefficient analysis for yield traits in rainfed rice (Oryza sativa L.). Journal of Pharmacognosy and Phytochemistry, 9: 1621–1623.
Nafisah, Roza C, Yunani N, Hairmansis A, Rostiati T, Jamil A. 2020. Genetic variabilities of agronomic traits and bacterial leaf blight resistance of high yielding rice varieties. Indonesian Journal of Agricultural Science, 20: 43–54.
Okasa AM, Sjahril R, Riadi M, Mahendradatta M, Sato T, Toriyama K, Ishii K, Hayashi Y, Abe T. 2021. Correlation and path coefficient analysis of grain yield and its components in Toraja land-race aromatic rice mutants induced by heavy ion beam. Asian Journal of Plant Sciences, 20: 406–413. https://doi.org/10.3923/ajps.2021.406.413
Oladosu Y, Rafii MY, Abdullah N, Abdul Malek M, Rahim HA, Hussin G, Abdul Latif M, Kareem I. 2014. Genetic variability and selection criteria in rice mutant lines as revealed by quantitative traits. Scientific World Journal, 2014: 1–12. https://doi.org/10.1155/2014/190531
Patel RRS, Sharma D, Das BK, Mondal S, Sahu PK, Vishwakarma G, Kumar V, Sao R, Khute IK. 2021. Study of coefficient of variation (GCV & PCV), heritability and genetic advance in advanced generation mutant line of rice (Oryza sativa L.). The Pharma Innovation Journal, 10: 784–787.
Patil S, Sahu V. 2009. Correlation and path analysis of rice germplasm accessions. International Journal of Plant Sciences, 4: 426–428.
Pérez-Jiménez M, Tallón CI, Pérez-Tornero O. 2020. Inducing mutations in Citrus spp.: Sensitivity of different sources of plant material to gamma radiation. Applied Radiation and Isotopes, 157: 1–7. https://doi.org/10.1016/j.apradiso.2019.109030
Potupureddi G, Balija V, Ballichatla S, Gokulan CG, Awalellu K, Lekkala S, Jallipalli K, Gayathri MG, Mohammad E, Milton M, Arutla S, Burka R, Shankar LG, Phani PA, Venkata SRL, Meenakshi SR, Viraktamath BC, … Madhav MS. 2021. Mutation resource of Samba Mahsuri revealed the presence of high extent of variations among key traits for rice improvement. PLoS ONE, 16: 1–21. https://doi.org/10.1371/journal.pone.0258816
Prakash HP, Verma OP, Chaudhary AK, Amir M. 2018. Correlation and path coefficient analysis in elite germplasm of rice (Oryza sativa L.). International Journal of Current Microbiology and Applied Sciences, 7: 177–187. https://doi.org/10.20546/ijcmas.2018.707.400
Premkumar R, Gnanamalar RP, Anandakumar CR. 2015. Correlation and path coefficient analysis among grain yield and kernel characters in rice (Oryza sativa L.). Electronic Journal of Plant Breeding, 6: 288–291.
Premkumar R, Gnanamalar RP, Anandakumar CR. 2016. Correlation and path coefficient analysis of grain quality traits in rice (Oryza sativa L.). Indian Journal of Agricultural Research, 50: 27–32. https://doi.org/10.18805/ijare.v0iOF.8434
Raghavendra P, Hittalmani S. 2016. Genetic parameters of two BC2F1 populations for development of superior male sterile lines pertaining to morpho-floral traits for aerobic rice (Oryza sativa L.). SAARC Journal of Agriculture, 13: 198–213. https://doi.org/10.3329/sja.v13i2.26580
Rani R, Raza G, Tung MH, Rizwan M, Ashfaq H, Shimelis H, Razzaq MK, Arif M. 2023. Genetic diversity and population structure analysis in cultivated soybean (Glycine max [L.] Merr.) using SSR and EST-SSR markers. PLoS ONE, 18: 1–19. https://doi.org/10.1371/journal.pone.0286099
Ratna M, Begum S, Husna A, Dey SR, Hossain MS. 2015. Correlation and path coefficients analyses in Basmati rice. Bangladesh Journal of Agricultural Research, 40: 153–161. https://doi.org/10.3329/bjar.v40i1.23768
Riadi M, Sjahril R, Kasim N, Diarjo RH. 2018. Heritability and path coefficient analysis for important characters of yield component related to grain yield in M4 red rice mutant. In IOP Conference Series: Earth and Environmental Science (Vol. 157, hal. 1–5). https://doi.org/10.1088/1755-1315/157/1/012050
Ritonga AW, Chozin MA, Syukur M, Maharijaya A, Sobir. 2018. Short communication: genetic variability, heritability, correlation, and path analysis in tomato (Solanum lycopersicum) under shading condition. Biodiversitas, 19: 1527–1531. https://doi.org/10.13057/biodiv/d190445
Riviello-Flores M, Cadena-Iñiguez J, Ruiz-Posadas, LDM Arévalo-Galarza M, Castillo-Juárez I, Soto Hernández M, Castillo-Martínez C. 2022. Use of gamma radiation for the genetic improvement of underutilized plant varieties. Plants, 11: 1–19. https://doi.org/10.3390/plants11091161
Riyanto A, Haryanto TAD, Hidayat P, Suprayogi. 2021. Genetic parameter and analysis of traits interrelationship in F2 rice generation of Inpago Unsoed 1 X Basmati Delta 9. American-Eurasian Journal of Sustainable Agriculture, 15: 15–28. https://doi.org/10.22587/aejsa.2021.15.1.2
Riyanto A, Hidayat P, Suprayogi Y, Haryanto TAD. 2023. Diallel analysis of length and shape of rice using Hayman and Griffing method. Open Agriculture, 8: 1–9. https://doi.org/10.1515/opag-2022-0169
Rosyada A, Putra RE, Gunawan W. 2022. Dynamics of competitiveness and efficiency of rice farming in Java Island, Indonesia. 3BIO: Journal of Biological Science, Technology and Management, 4: 105–119. https://doi.org/10.5614/3bio.2022.4.2.5
Sadimantara GR, Yusuf DN, Febrianti E, Leomo S, Muhidin. 2021. The performance of agronomic traits, genetic variability, and correlation studies for yield and its components in some red rice (Oryza sativa) promising lines. Biodiversitas, 22: 3994–4001. https://doi.org/10.13057/biodiv/d220947
Sao R, Sahu PK, Patel RS, Das BK, Jankuloski L, Sharma D. 2022. Genetic improvement in plant architecture, maturity duration and agronomic traits of three traditional rice landraces through gamma ray-based induced mutagenesis. Plants, 11: 1–37. https://doi.org/10.3390/plants11243448
Saragih SHY, Sitanggang KD, Lestari W, Rizal K. 2021. Growth response of labuhanbatu local rice with gamma ray irradiation in M1 generation. In IOP Conference Series: Earth and Environmental Science (Vol. 1012, hal. 2–5). https://doi.org/10.1088/1755-1315/1012/1/012033
Schober P, Schwarte LA. 2018. Correlation coefficients: appropriate use and interpretation. Anesthesia and Analgesia, 126: 1763–1768. https://doi.org/10.1213/ANE.0000000000002864
Shah A, Hassan G, Amin J, Ghani F. 2018. Estimation of genetic parameters and interrelationship among important traits in bread wheat. International Journal of Farming and Allied Sciences, 7: 93–99.
Singh AG, Patel HR, Patel AA, Aditi P, Bhati K, Kajal R. 2021. Assessment of heritability and genetic advance in segregating generation for yield, its components and quality traits in rice (Oryza sativa L.). The Pharma Innovation Journal, 10: 271–274. Diambil dari http://www.thepharmajournal.com
Singh KS, Saxena S, Sinam Y, Gautam S, Shantibala Devi GA. 2022. Effect of gamma radiation processing on the quality characteristics of anthocyanin rich ethnic rice cultivars. Applied Food Research, 2: 100081. https://doi.org/10.1016/j.afres.2022.100081
Singh RK, Chaudhary BD. 1979. Biometrical Methods in Quantitative Genetics Analysis. New Delhi: Kalyani Publishers.
Singh SK, Singh CM, Lal GM. 2011. Assessment of genetic variability for yield and its component characters in rice (Oryza sativa L.). Research in Plant Biology, 1: 73–76.
Sivasubramanian S, Menon M. 1973. Heterosis and inbreeding depression in rice. Madras Agricultural Journal, 60: 1139–1144.
Sofian A, Nandariyah, Djoar DW, Sutarno. 2019. Estimation variability, heritability and genetic advance of mutant black rice (M6). Caraka Tani: Journal of Sustainable Agriculture, 34: 170–178. https://doi.org/10.20961/carakatani.v34i2.27666
Stansfield WD. 1991. Schaum’s Outline of Theory and Problems of Genetics (Third). New York: McGraw-Hill Companies.
Sudeepthi K, Srinivas T, Kumar BNVSRR, Jyothula DPB, Umar SN. 2020. Assessment of genetic variability, character association and path analysis for yield and yield component traits in rice (Oryza sativa L.). Electronic Journal of Plant Breeding, 11: 65–69. https://doi.org/10.37992/2020.1101.026
Sundaram KM, Rajeswari S, Saraswathi R, Jayaprakash P. 2019. Genetic variability studies for yield and its components and quality traits with high iron and zinc content in segregating population of rice (Oryza sativa L.). International Journal of Chemical Studies, 7: 800–805.
Syahri, Somantri RU. 2016. The use of improved varieties resistant to pests and diseases to increase national rice production. J. Litbang Pert., 35: 25-36 (In Indonesian).
Thuy NP, Trai NN, Khoa BD, Thao NHX, Phong VT, Thi QVC. 2023. Correlation and path analysis of association among yield, micronutrients, and protein content in rice accessions grown under aerobic condition from Karnataka, India. Plant Breeding and Biotechnology, 11: 117–129. https://doi.org/10.9787/PBB.2023.11.2.117
Tiwari DN, Tripathi SR, Tripathi MP, Khatri N, Bastola BR. 2019. Genetic variability and correlation coefficients of major traits in early maturing rice under rainfed lowland environments of Nepal. Advances in Agriculture, 2019: 1–9. https://doi.org/10.1101/520338
Tsagaye D, Gadebo A, Aklilu S. 2022. Correlation and path analysis in tomato (Lycopersicon esculentum MILL) genotypes. Ecology and Evolutionary Biology, 7: 46–53. https://doi.org/10.11648/j.eeb.20220703.12
USDA. 2023. Grain : World Markets and Trade. New York.
Wang X, Jing ZH, He C, Liu QY, Jia H, Qi JY, Zhang HL. 2021. Breeding rice varieties provides an effective approach to improve productivity and yield sensitivity to climate resources. European Journal of Agronomy, 124: 126239. https://doi.org/10.1016/j.eja.2021.126239
DOI: https://doi.org/10.24198/kultivasi.v23i2.55129
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Kultivasi Indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.