Agronomic performance and stability of Padjadjaran hybrid maize in different agroecosystems
Abstract
Keywords
Full Text:
PDFReferences
Agahi K, Ahmadi J, Oghan HA, Fotokian MH, Orang SF. 2020. Analysis of genotype × environment interaction for seed yield in spring oilseed rape using the AMMI model. Crop Breeding and Applied Biotechnology, 20(1). https://doi.org/10.1590/1984-70332020v20n1a2
Al-Naggar AMM, Shafik MM, Musa RYM. 2020. Genetic diversity based on morphological traits of 19 maize genotypes using Principal Component Analysis and GT Biplot. Annual Research & Review in Biology, 35(2): 68–85. https://doi.org/10.9734/arrb/2020/v35i230191
Breese EL. 1969. The measurement and significance of genotype-environment interactions in grasses. Heredity, 24(1): 27–44. https://doi.org/10.1038/hdy.1969.3
Desoky E-SM, Mansour E, Ali MMA, Yasin MAT, Abdul-Hamid MIE, Rady MM, Ali EF. 2021. Exogenously used 24-Epibrassinolide promotes drought tolerance in maize hybrids by improving plant and water productivity in an arid environment. Plants, 10(2): 354. https://doi.org/10.3390/plants10020354
Direktorat Jenderal Tanaman Pangan. 2024. Directorate General of Food Crops Performance Report 2023. Kementerian Pertanian.
Eberhart SA, Russell WA. 1966. Stability Parameters for Comparing Varieties 1. Crop Science, 6(1): 36–40. https://doi.org/10.2135/cropsci1966.0011183X000600010011x
El Shamey EAZ, Sakran RM, El Sayed MAA, Aloufi S, Alharthi B, Alqurashi M, Mansour E, Abd El-Moneim D. 2022. Heterosis and combining ability for floral and yield characters in rice using cytoplasmic male sterility system. Saudi Journal of Biological Sciences, 29(5): 3727–3738. https://doi.org/10.1016/j.sjbs.2022.03.010
Fadhillah F, Yuwariah Y, Irwan AW. 2021. The effect of various planting systems on the physiology, growth, and yield of three rice cultivars in medium lowlands. Kultivasi, 20(1): 7-14. https://doi.org/10.24198/kultivasi.v20i1.31532
Gauch HG. 2006. Statistical analysis of yield trials by AMMI and GGE. Crop Science, 46(4): 1488–1500. https://doi.org/10.2135/cropsci2005.07-0193
Gauch HG. 2013. A simple protocol for AMMI analysis of yield trials. Crop Science, 53(5): 1860–1869. https://doi.org/10.2135/cropsci2013.04.0241
Han X, Dong L, Cao Y, Lyu Y, Shao X, Wang Y, Wang L. 2022. Adaptation to climate change effects by cultivar and sowing date selection for maize in the Northeast China plain. Agronomy, 12(5): 984. https://doi.org/10.3390/agronomy12050984
Huang Z, Liu Q, An B, Wu X, Sun L, Wu P, Liu B, Ma X. 2021. Effects of planting density on morphological and photosynthetic characteristics of leaves in different positions on Cunninghamia lanceolata Saplings. Forests, 12(7): 853. https://doi.org/10.3390/f12070853
Jaikumar NS, Stutz SS, Fernandes SB, Leakey ADB, Bernacchi CJ, Brown PJ, Long SP. 2021. Can improved canopy light transmission ameliorate loss of photosynthetic efficiency in the shade? An investigation of natural variation in Sorghum bicolor. Journal of Experimental Botany, 72(13): 4965–4980. https://doi.org/10.1093/jxb/erab176
Kamara MM, Ghazy NA, Mansour E, Elsharkawy MM, Kheir AMS, Ibrahim KM. 2021. Molecular genetic diversity and Line × Tester analysis for resistance to late wilt disease and grain yield in maize. Agronomy, 11(5): 898. https://doi.org/10.3390/agronomy11050898
Katsenios N, Sparangis P, Chanioti S, Giannoglou M, Leonidakis D, Christopoulos MV, Katsaros G, & Efthimiadou A. 2021. Genotype × Environment interaction of yield and grain quality traits of maize hybrids in Greece. Agronomy, 11(2): 357. https://doi.org/10.3390/agronomy11020357
Kempton RA. 1984. The use of biplots in interpreting variety by environment interactions. The Journal of Agricultural Science, 103(1): 123–135. https://doi.org/10.1017/S0021859600043392
Luo J, Pan Y-B, Que Y, Zhang H, Grisham MP, Xu L. 2015. Biplot evaluation of test environments and identification of mega-environment for sugarcane cultivars in China. Scientific Reports, 5(1): 15505. https://doi.org/10.1038/srep15505
Luo Y, Zhang M, Liu Y, Liu J, Li W, Chen G, Peng Y, Jin M, Wei W, Jian L, Yan J, Fernie AR, Yan J. 2022. Genetic variation in YIGE1 contributes to ear length and grain yield in maize. New Phytologist, 234(2): 513–526. https://doi.org/10.1111/nph.17882
Ma C, Liu C, Ye Z. 2024. Influence of Genotype × Environment interaction on yield stability of maize hybrids with AMMI model and GGE biplot. Agronomy, 14(5): 1000. https://doi.org/10.3390/agronomy14051000
Ma D, Li S, Zhai L, Yu X, Xie R, Gao J. 2020. Response of maize barrenness to density and nitrogen increases in Chinese cultivars released from the 1950s to 2010s. Field Crops Research, 250: 107766. https://doi.org/10.1016/j.fcr.2020.107766
Mansour E, Moustafa ESA, El-Naggar NZA, Abdelsalam A, Igartua E. 2018. Grain yield stability of high-yielding barley genotypes under Egyptian conditions for enhancing resilience to climate change. Crop and Pasture Science, 69(7): 681. https://doi.org/10.1071/CP18144
Maulana H, Maxiselly Y, Yuwariah Y, Ruswandi D. 2023. Heritability and selection using GGE biplots and the Sustainability Index (SI) of maize mutants under different cropping systems in upland. Sustainability, 15(8): 6824. https://doi.org/10.3390/su15086824
Mohammed A. 2020. Genotype by environment interaction and yield stability analysis of open pollinated maize varieties using AMMI model in Afar Regional State, Ethiopia. Journal of Plant Breeding and Crop Science, 12(1): 8–15. https://doi.org/10.5897/JPBCS2019.0839
Omar M, Rabie HA, Mowafi SA, Othman HT, El-Moneim DA, Alharbi K, Mansour E, Ali MMA. 2022. Multivariate analysis of agronomic traits in newly developed maize hybrids grown under different agro-environments. Plants, 11(9): 1187. https://doi.org/10.3390/plants11091187
Pramitha JL, Joel J, Rajasekaran R, Uma D, Vinothana K, Balakrishnan M, Sathyasheela KRV, Muthurajan R, Hossain F. 2022. Stability analysis and heterotic studies in maize (Zea mays L.) inbreds to develop hybrids with low phytic acid and high-quality protein. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.781469
Purchase JL, Hatting H, van Deventer CS. 2000. Genotype × environment interaction of winter wheat ( Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. South African Journal of Plant and Soil, 17(3): 101–107. https://doi.org/10.1080/02571862.2000.10634878
Rizzo G, Monzon JP, Tenorio FA, Howard R, Cassman KG, Grassini P. 2022. Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments. Proceedings of the National Academy of Sciences, 119(4). https://doi.org/10.1073/pnas.2113629119
Ruswandi D, Azizah E, Maulana H, Ariyanti M, Nuraini A, Indriani NP, Yuwariah Y. 2022. Selection of high-yield maize hybrid under different cropping systems based on stability and adaptability parameters. Open Agriculture, 7(1): 161–170. https://doi.org/10.1515/opag-2022-0073
Ruswandi D, Maulana H, Karuniawan A, Mansyur, Ismail A, Maxiselly Y, Fauzan MR, Abdullah MA, Yuwariah Y. 2023. Multi-traits selection of maize hybrids under sole-crop and multiple-crops with soybean. Agronomy, 13(10): 2448. https://doi.org/10.3390/agronomy13102448
Ruswandi D, Syafii M, Maulana H, Ariyanti M, Indriani NP, Yuwariah Y. 2021. GGE biplot analysis for stability and adaptability of maize hybrids in Western Region of Indonesia. International Journal of Agronomy, 2021: 1–9. https://doi.org/10.1155/2021/2166022
Sandhu S, Dhillon BS. 2021. Breeding plant type for adaptation to high plant density in tropical maize—A step towards productivity enhancement. Plant Breeding, 140(4): 509–518. https://doi.org/10.1111/pbr.12949
Shojaei SH, Mostafavi K, Bihamta MR, Omrani A, Mousavi SMN, Illés Á, Bojtor C, Nagy J. 2022. Stability on maize hybrids based on GGE biplot graphical technique. Agronomy, 12(2): 394. https://doi.org/10.3390/agronomy12020394
Soleh MA, Anjarsari IRD, Rosniawaty S. 2020. Decreased stomatal conductance values, light use efficiency, and growth components due to waterlogging in several sugarcane genotypes. Kultivasi, 19(2): 1114-1118. https://doi.org/10.24198/kultivasi.v19i2.22471
Sun S, Huang Z, Liu H, Xu J, Zheng X, Xue J, Li S. 2023. Response of grain yield to planting density and maize hybrid selection in high latitude China—A multisource data analysis. Agronomy, 13(5): 1333. https://doi.org/10.3390/agronomy13051333
Vaezi B, Pour-Aboughadareh A, Mohammadi R, Mehraban A, Hossein-Pour T, Koohkan E, Ghasemi S, Moradkhani H, Siddique KHM. (2019). Integrating different stability models to investigate genotype × environment interactions and identify stable and high-yielding barley genotypes. Euphytica, 215(4): 63. https://doi.org/10.1007/s10681-019-2386-5
Wicaksana N, Maulana H, Yuwariah Y, Ismail A, Ruswandi YAR, Ruswandi D. 2022. Selection of high yield and stable maize hybrids in mega-environments of Java Island, Indonesia. Agronomy, 12(12): 2923. https://doi.org/10.3390/agronomy12122923
DOI: https://doi.org/10.24198/kultivasi.v24i1.62060
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Kultivasi Indexed by:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.