FABP4 and Metabolite Profile in Lipopolysaccharide-Induced Mice Model Treated with Moringa oleifera Ethanol Leaf Extract

Cenia P. Hanifah, Ifa Sulistiyorini, Vanessa A. Sumirat, Neni Anggraeni, Mirasari Putri, Mohammad Ghozali, Mas Rizky A.A Syamsunarno

Abstract


Sepsis, a life-threatening organ dysfunction resulting from a dysregulated host response to infection, induces changes in blood cells and metabolic alterations. Fatty acid binding protein 4 (FABP4), a lipid chaperone predominantly expressed in adipose tissue, is modulated in sepsis and may contribute to metabolic and immunologic changes. Moringa oleifera (M. oleifera) leaf extract (MOLE) is known to modulate immune system activity, but its potential for treating acute inflammatory conditions like sepsis remains unclear. This study investigates the ability of MOLE to modulate metabolite and hematological profiles in lipopolysaccharide (LPS)-induced sepsis in mice. Thirty-five male Swiss Webster mice (Mus musculus) were divided into five groups, including healthy control pre-treated with 0.5% carboxymethyl cellulose (CMC), an LPS-induced negative control, an LPS-induced positive control treated with dexamethasone (DMX) 7mg/KgBW/day and two MOLE treatment groups with doses of 5.6 and 11.2 mg/20 gBW. Mice received MOLE pre-treatment for three days before LPS induction. Three hours post-LPS injection, the LPS-induced group exhibited leukopenia (1.4 [0.9-2.5] x109 cells/L) and a 68.3% increase in triglyceride levels. However, the MOLE-treated group showed improved erythrocyte levels compared to the positive control group; [(9.9(9.3-10.0) x1012 cell/L) vs (7.7(7.0-9.0) x1012 cells/L), p<0.05]. The study suggests that MOLE administration may positively impact sepsis conditions, particularly by enhancing RBC levels. Further research with an extended observation period is recommended to address limitations in metabolite level assessment.  


Keywords


Moringa oleifera; fatty acid binding – 4 (FABP-4); metabolite profiles; hematological profiles; lipopolysaccharide (LPS)

Full Text:

PDF

References


Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801. doi:10.1001/jama.2016.0287

Cheluvappa R, Denning GM, Lau GW, Grimm MC, Hilmer SN, Le Couteur DG. Pathogenesis of the hyperlipidemia of Gram-negative bacterial sepsis may involve pathomorphological changes in liver sinusoidal endothelial cells. International Journal of Infectious Diseases. 2010;14(10). doi:10.1016/j.ijid.2010.02.2263

Sagy M, Al-Qaqaa Y, Kim P. Definitions and Pathophysiology of Sepsis. Current Problems in Pediatric and Adolescent Health Care. 2013;43(10):260-263. doi:10.1016/j.cppeds.2013.10.001

Lonsdale DO, Shah R V., Lipman J. Infection, Sepsis and the Inflammatory Response: Mechanisms and Therapy. Frontiers in Medicine. 2020;7. doi:10.3389/fmed.2020.588863

Macdonald J, Galley HF, Webster NR. Oxidative stress and gene expression in sepsis. British Journal of Anaesthesia. 2003;90(2):221-232. doi:10.1093/bja/aeg034

Wasyluk W, Zwolak A. Metabolic alterations in sepsis. Journal of Clinical Medicine. 2021;10(11). doi:10.3390/jcm10112412

Tan WS, Arulselvan P, Karthivashan G, Fakurazi S. Moringa oleifera flower extract suppresses the activation of inflammatory mediators in lipopolysaccharide-stimulated RAW 264.7 macrophages via NF- κ B pathway. Mediators of Inflammation. 2015;2015. doi:10.1155/2015/720171

Umbarawan Y, Syamsunarno MRAA, Obinata H, et al. Robust suppression of cardiac energy catabolism with marked accumulation of energy substrates during lipopolysaccharide-induced cardiac dysfunction in mice. Metabolism. 2017;77:47-57. doi:10.1016/j.metabol.2017.09.003

Putri M, Rastiarsa BM, Djajanagara RATM, et al. Effect of cogon grass root ethanol extract on fatty acid binding protein 4 and oxidative stress markers in a sepsis mouse model. F1000Research. 2021;10:1161. doi:10.12688/f1000research.73561.1

Kashyap P, Kumar S, Riar CS, et al. Recent Advances in Drumstick (Moringa oleifera) Leaves Bioactive Compounds: Composition, Health Benefits, Bioaccessibility, and Dietary Applications. Antioxidants. 2022;11(2):402. doi:10.3390/antiox11020402

Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview. International Journal of Molecular Sciences. 2015;16(12):12791-12835. doi:10.3390/ijms160612791

Vergara-Jimenez M, Almatrafi MM, Fernandez ML. Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants. 2017;6(4). doi:10.3390/antiox6040091

Xie J, Wang Y, Jiang WW, et al. Moringa oleifera Leaf Petroleum Ether Extract Inhibits Lipogenesis by Activating the AMPK Signaling Pathway. Frontiers in Pharmacology. 2018;9. doi:10.3389/fphar.2018.01447

Chung S, Park SH, Park JH, Hwang JT. Anti-obesity effects of medicinal plants from Asian countries and related molecular mechanisms: a review. Reviews in Cardiovascular Medicine. 2021;22(4):1279. doi:10.31083/j.rcm2204135

Alia F, Syamsunarno MRAA, Sumirat VA, Ghozali M, Atik N. The Haematological profiles of high fat diet mice model with moringa oleifera leaves ethanol extract treatment. Biomedical and Pharmacology Journal. 2019;12(4):2143-2149. doi:10.13005/bpj/1849

Syamsunarno MRAA, Alia F, Anggraeni N, Sumirat VA, Praptama S, Atik N. Ethanol extract from Moringa oleifera leaves modulates brown adipose tissue and bone morphogenetic protein 7 in high-fat diet mice. Veterinary World. Published online May 21, 2021:1234-1240. doi:10.14202/vetworld.2021.1234-1240

Aristianti A, Nurkhaeri N, Tandiarrang VY, Awaluddin A, Muslimin L. Formulation and pharmacological studies of leaves of moringa (Moringa oleifera), a novel hepatoprotection in oral drug formulations. Open Access Macedonian Journal of Medical Sciences. 2021;9:151-156. doi:10.3889/oamjms.2021.5839

Li J, Xia K, Xiong M, Wang X, Yan N. Effects of sepsis on the metabolism of sphingomyelin and cholesterol in mice with liver dysfunction. Experimental and Therapeutic Medicine. 2017;14(6):5635-5640. doi:10.3892/etm.2017.5226

Qin X, Jiang X, Jiang X, et al. Micheliolide inhibits LPS-induced inflammatory response and protects mice from LPS challenge. Scientific Reports. 2016;6. doi:10.1038/srep23240

England JM, Rowan RM, van Assendelft OW, et al. Recommendations of the International Council for Standardization in Haematology for Ethylenediaminetetraacetic Acid Anticoagulation of Blood for Blood Cell Counting and Sizing: International Council for Standardization in Haematology: Expert Panel on Cytometry. American Journal of Clinical Pathology. 1993;100(4):371-372. doi:10.1093/ajcp/100.4.371

Banfi G, Salvagno GL, Lippi G. The role of ethylenediamine tetraacetic acid (EDTA) as in vitro anticoagulant for diagnostic purposes. Clinical Chemistry and Laboratory Medicine. 2007;45(5):565-576. doi:10.1515/CCLM.2007.110

Biljak VR, Božičević S, Krhač M, Lovrenčić MV. Impact of under-filled blood collection tubes containing K2EDTA and K3EDTA as anticoagulants on automated complete blood count (CBC) testing. Clinical Chemistry and Laboratory Medicine. 2016;54(11):e323-e326. doi:10.1515/cclm-2016-0169

Kitchen S, Adcock DM, Dauer R, et al. International Council for Standardisation in Haematology (ICSH) recommendations for collection of blood samples for coagulation testing. International Journal of Laboratory Hematology. 2021;43(4):571-580. doi:10.1111/ijlh.13584

Akorsu EE, Adjabeng LB, Sulleymana MA, Kwadzokpui PK. Variations in the full blood count parameters among apparently healthy humans in the Ho municipality using ethylenediamine tetraacetic acid (EDTA), sodium citrate and lithium heparin anticoagulants: A laboratory-based cross-sectional analytical study. Heliyon. 2023;9(6). doi:10.1016/j.heliyon.2023.e17311

Kong N, Chen G, Wang H, et al. Blood leukocyte count as a systemic inflammatory biomarker associated with a more rapid spirometric decline in a large cohort of iron and steel industry workers. Respiratory Research. 2021;22(1). doi:10.1186/s12931-021-01849-y

Seemann S, Zohles F, Lupp A. Comprehensive comparison of three different animal models for systemic inflammation. Journal of Biomedical Science. 2017;24(1). doi:10.1186/s12929-017-0370-8

Bhardwaj M, Patil R, Mani S, R M, Vasanthi HR. Refinement of LPS induced Sepsis in SD Rats to Mimic Human Sepsis. Biomedical and Pharmacology Journal. 2020;13(1):335-346. doi:10.13005/bpj/1893

Noor SM, Dharmayanti I. Penanganan Rodensia Dalam Penelitian Sesuai Kaidah Kesejahteraan Hewan. IAARD Press; 2016. Accessed July 18, 2023 https://repository.pertanian.go.id/handle/123456789/15883

AL-SAGAIR OA, EL-DDALY ES, MOUSA AA. INFLUENCE OF BACTERIAL ENDOTOXINSON BONE MARROW AND BLOODCOMPONENTS. Medical Journal of Islamic World Academy Sciences. 2009;17:23-36.

Peñailillo A, Sepulveda M, Palma C, et al. Haematological and blood biochemical changes induced by the administration of low doses of Escherichia coli lipopolysaccharide in rabbits. Archivos de Medicina Veterinaria. 2016;48(3):315-320. doi:10.4067/S0301-732X2016000300012

Wang W, Wideman R, Chapman M, Bersi T, Erf G. Effect of intravenous endotoxin on blood cell profiles of broilers housed in cages and floor litter environments. Poultry Science. 2003;82(12):1886-1897. doi:10.1093/ps/82.12.1886

Gupta P, Wright SE, Kim SH, Srivastava SK. Phenethyl isothiocyanate: A comprehensive review of anti-cancer mechanisms. Biochimica et Biophysica Acta - Reviews on Cancer. 2014;1846(2):405-424. doi:10.1016/j.bbcan.2014.08.003

Alia F, Putri M, Anggraeni N, Syamsunarno MRAA. The Potency of Moringa oleifera Lam. as Protective Agent in Cardiac Damage and Vascular Dysfunction. Frontiers in Pharmacology. 2022;12. doi:10.3389/fphar.2021.724439

Samuel SA, Francis AO, Onyinyechi UO, Ayomide O. Effects Of Moringa Oleifera Leaf Extract On Red And White Blood Cells Counts. International Journal of Current Medical and Pharmaceutical Research. 2015;1(9):150-161. http://www.journalcmpr.com

Al-Eisa RA, Helal M, Aljahani AH, et al. Ochratoxin A oral mycotoxin and honey dietary intake effects on TNF- α immunology response, lactic acid bacteria microbial louds, β -glucuronidase enzyme activity, some hematological and biochemical parameters on mice. Materials Express. 2023;13(7):1203-1211. doi:10.1166/mex.2023.2462

Ogbu S, Josiah C, Victor D, Author C. Haematological Effects of Oral Administration of Aqueous Leaf Extract of Moringa Oleifera in Wistar Rats: Further Evidence of Immunomodulatory Potential. International Journal of Health Sciences & Research. 2017;7(8):120. www.ijhsr.org

Shrivastava M, Prasad A, Kumar D. Evaluation of Anti-Malarial Effect of Moringa oleifera (Lam) in Plasmodium yoelii Infected Mice. Indian Journal of Pharmaceutical Sciences. 2021;83(6):1221-1228. doi:10.36468/pharmaceutical-sciences.877

Harris HW, Gosnell JE, Kumwenda ZL. The Lipemia of Sepsis : Triglyceride-rich Lipoproteins as Agents of Innate Immunity. Journal of Endotoxin Research. 2001;6.

Cetinkaya A, Erden A, Avci D, et al. Is hypertriglyceridemia a prognostic factor in sepsis? Therapeutics and Clinical Risk Management. 2014;10(1):147-150. doi:10.2147/TCRM.S57791

Barker G, Leeuwenburgh C, Brusko T, Moldawer L, Reddy ST, Guirgis FW. Review lipid and lipoprotein dysregulation in sepsis: Clinical and mechanistic insights into chronic critical illness. Journal of Clinical Medicine. 2021;10(8). doi:10.3390/jcm10081693

Spitzer JJ, Bagby GJ, Meszaros K, Lang CH. Alterations in lipid and carbohydrate metabolism in sepsis. Journal of Parenteral and Enteral Nutrition. 1988;12(6 SUPPL.). doi:10.1177/014860718801200604

Chen Q, Niu L, Hua C, et al. Chronic dexamethasone exposure markedly decreased the hepatic triglyceride accumulation in growing goats. General and Comparative Endocrinology. 2018;259:115-121. doi:10.1016/j.ygcen.2017.11.011

Weinstock PH, Bisgaier CL, Aalto-Setälä K, et al. Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes. Journal of Clinical Investigation. 1995;96(6):2555-2568. doi:10.1172/JCI118319

Read TE, Grunfeld C, Kumwenda ZL, et al. Triglyceride-rich lipoproteins prevent septic death in rats. The Journal of Experimental Medicine. 1995;182(1):267-272. doi:10.1084/jem.182.1.267

Kumwenda ZL, Wong CB, Johnson JA, Gosnell JE, Welch WJ, Harris HW. Chylomicron-Bound Endotoxin Selectively Inhibits NF-??B Activation in Rat Hepatocytes. Shock. 2002;18(2):182-188. doi:10.1097/00024382-200208000-00016

Kasravi B, Lee DH, Lee JW, Dada S, Harris HW. Chylomicron-Bound LPS Selectively Inhibits the Hepatocellular Response to Proinflammatory Cytokines. Journal of Surgical Research. 2008;146(1):96-103. doi:10.1016/j.jss.2007.06.013

McCallum RE, Seale TW, Stith RD. Influence of endotoxin treatment on dexamethasone induction of hepatic phosphoenolpyruvate carboxykinase. Infection and Immunity. 1983;39(1):213-219. doi:10.1128/iai.39.1.213-219.1983

Schmidt C, Höcherl K, Bucher M. Regulation of renal glucose transporters during severe inflammation. American Journal of Physiology-Renal Physiology. 2007;292(10):804-811. doi:10.1152/ajprenal.00258.2006.-Severe

Oguri S, Motegi K, Iwakura Y, Endo Y. Primary role of interleukin-1α and interleukin-1β in lipopolysaccharide-induced hypoglycemia in mice. Clinical and Diagnostic Laboratory Immunology. 2002;9(6):1307-1312. doi:10.1128/CDLI.9.6.1307-1312.2002

Wang X, Tang M, Zhang Y, et al. Dexamethasone enhances glucose uptake by SGLT1 and GLUT1 and boosts ATP generation through the PPP-TCA cycle in bovine neutrophils. Journal of Veterinary Science. 2022;23(5). doi:10.4142/jvs.22112

Rhen T, Cidlowski JA. Antiinflammatory Action of Glucocorticoids — New Mechanisms for Old Drugs. New England Journal of Medicine. 2005;353(16):1711-1723. doi:10.1056/NEJMra050541

Tang W, Yang J, Zhao Z, Lian Z, Liang G. Intracellular coassembly boosts the anti-inflammation capacity of dexamethasone. Nanoscale. 2017;9(45):17717-17721. doi:10.1039/c7nr07197c

Hu B, Li Y, Gao L, et al. Hepatic Induction of Fatty Acid Binding Protein 4 Plays a Pathogenic Role in Sepsis in Mice. American Journal of Pathology. 2017;187(5):1059-1067. doi:10.1016/j.ajpath.2017.01.002

Bao Y, Xiao J, Weng Z, Lu X, Shen X, Wang F. A phenolic glycoside from Moringa oleifera Lam. improves the carbohydrate and lipid metabolisms through AMPK in db/db mice. Food Chemistry. 2020;311. doi:10.1016/j.foodchem.2019.125948

Balusamy SR, Perumalsamy H, Ranjan A, Park S, Ramani S. A dietary vegetable, Moringa oleifera leaves (drumstick tree) induced fat cell apoptosis by inhibiting adipogenesis in 3T3-L1 adipocytes. Journal of Functional Foods. 2019;59(March):251-260. doi:10.1016/j.jff.2019.05.029

Kim DS, Choi MH, Shin HJ. Extracts of Moringa oleifera leaves from different cultivation regions show both antioxidant and antiobesity activities. Journal of Food Biochemistry. 2020;44(7). doi:10.1111/jfbc.13282

Ali Redha A, Perna S, Riva A, et al. Novel insights on anti-obesity potential of the miracle tree, Moringa oleifera: A systematic review. Journal of Functional Foods. 2021;84. doi:10.1016/j.jff.2021.104600

Barbagallo I, Vanella L, Lazzarino G. Metabolism During Adipogenic Differentiation of Human Stem Cells. European Review for Medical and Pharmacological Sciences. 2016;20(December):5223-5232.

Singh A, Navneet D. Ethnomedicinal, Pharmacological and Antimicrobial Aspects of Moringa oleifera Lam.: A review. The Journal of Phytopharmacology. 2018;7(1):45-50. doi:10.31254/phyto.2018.7110

Villarruel-López A, López-de la Mora DA, Vázquez-Paulino OD, et al. Effect of Moringa oleifera consumption on diabetic rats. BMC Complementary and Alternative Medicine. 2018;18(1). doi:10.1186/s12906-018-2180-2

Pareek A, Pant M, Gupta MM, et al. Moringa oleifera: An Updated Comprehensive Review of Its Pharmacological Activities, Ethnomedicinal, Phytopharmaceutical Formulation, Clinical, Phytochemical, and Toxicological Aspects. International Journal of Molecular Sciences. 2023;24(3):2098. doi:10.3390/ijms24032098

Ndong M, Uehara M, Katsumata S ichi, Suzuki K. Effects of Oral Administration of Moringa oleifera Lam on Glucose Tolerance in Goto-Kakizaki and Wistar Rats. Journal of Clinical Biochemistry and Nutrition. 2007;40(3):229-233. doi:10.3164/jcbn.40.229

Choi EJ, Debnath T, Tang Y, Ryu YB, Moon SH, Kim EK. Topical application of Moringa oleifera leaf extract ameliorates experimentally induced atopic dermatitis by the regulation of Th1/Th2/Th17 balance. Biomedicine and Pharmacotherapy. 2016;84:870-877. doi:10.1016/j.biopha.2016.09.085

Soliman MM, Al-Osaimi SH, HassanMohamed E, et al. Protective Impacts of Moringa oleifera Leaf Extract against Methotrexate-Induced Oxidative Stress and Apoptosis on Mouse Spleen. Evidence-Based Complementary and Alternative Medicine. 2020;2020:1-13. doi:10.1155/2020/6738474

El-Hadary AE, Ramadan MF. Antioxidant traits and protective impact of Moringa oleifera leaf extract against diclofenac sodium-induced liver toxicity in rats. Journal of Food Biochemistry. 2019;43(2):e12704. doi:10.1111/jfbc.12704

Nunthanawanich P, Sompong W, Sirikwanpong S, et al. Moringa oleifera aqueous leaf extract inhibits reducing monosaccharide-induced protein glycation and oxidation of bovine serum albumin. Springerplus. 2016;5(1). doi:10.1186/s40064-016-2759-3

Borgonovo G, De Petrocellis L, Moriello AS, et al. Moringin, a stable isothiocyanate from moringa oleifera, activates the somatosensory and pain receptor TRPA1 channel in vitro. Molecules. 2020;25(4). doi:10.3390/molecules25040976

Costa RA, De Sousa OV, Hofer E, Mafezoli J, Barbosa FG, Dos Fernandes Vieira RHS. Thiocarbamates from Moringa oleifera Seeds Bioactive against Virulent and Multidrug-Resistant Vibrio Species. BioMed Research International. 2017;2017. doi:10.1155/2017/7963747

Mishra G, Singh P, Verma R, et al. Traditional uses, phytochemistry and pharmacological properties of Moringa oleifera plant: An overview. Der Pharmacia Lettre. 2011;3(2):141-164. www.scholarsresearchlibrary.com

Vongsak B, Mangmool S, Gritsanapan W. Antioxidant Activity and Induction of mRNA Expressions of Antioxidant Enzymes in HEK-293 Cells of Moringa oleifera Leaf Extract. Planta Medica. 2015;81(12/13):1084-1089. doi:10.1055/s-0035-1546168




DOI: https://doi.org/10.15416/pcpr.v8i3.50860

Refbacks

  • There are currently no refbacks.


                                                                         
Pharmacology and Clinical Pharmacy Research is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
 
                                                                      VIEW VISITOR STATS