5,6-, 8,9-, 11,12- and 14,15-Epoxyeicosatrienoic Acids (EETs) Induce Peripheral Receptor-Dependent Antinociception in PGE2-Induced Hyperalgesia in Mice
Abstract
Epoxyeicosatrienoic acids (EETs) are cytochrome P450-epoxygenase-derived metabolites of arachidonic acid that act as endogenous signaling molecules in multiple biological systems, including their controversial effects on pain, including reports of the central analgesic effect and its action in inducing pain. The aim of this study was to verify the peripheral antinociceptive effect of EETs and the effect of the selective EET receptor antagonist, 14,15-EEZE, on this antinociception. The nociceptive threshold was determined by paw pressure withdrawal, and hyperalgesia was induced by intraplantar injection of PGE2 to evaluate the effect of EETs administration. EETs (5,6-, 8,9-, 11,12-, and 14,15-EET) were administered intraplantarly to male mice (n = 5). To examine the mechanism of action, a non-selective EET receptor antagonist (14,15-EEZE) was administered peripherally. Intraplantar injections of 5,6-, 8,9-, and 11,12-EET (32, 64, and 128 ng) or 14,15-EET (128, 256 and 512 ng), five minutes before the third hour after PGE2 injection induced a dose-dependent antinociceptive response. EETs showed peak action five minutes after injection, and this effect decreased concomitantly with a reduction in the nociceptive effect of PGE2 until approximately 100 min after injection (270 min after PGE2 injection). The maximum dose of each EET completely reversed the hyperalgesia induced by PGE2. The antinociceptive effect of EETs was confined to the paw that received the injection, indicating a localized effect. Intraplantar injection of the EET antagonist, 14,15-EEZE, reversed in a dose-dependent manner (32-512 ng/paw) the peripheral antinociception induced by 5,6-, 8,9-, 11,12-, and 14,15-EET. Our results provide evidence that EETs induce a peripheral antinociceptive effect and that the mechanism of action involves EET receptor activation.
Keywords
Full Text:
PDFReferences
Zeldin DC. Epoxygenase Pathways of Arachidonic Acid Metabolism. Journal Biology Chemistry. 2001; 276(39):36059–36062. doi: 10.1074/jbc.R100030200.
Kroetz DL, Xu F. Regulation and Inhibition of Arachidonic Acid ω-Hydroxylases and 20-HETE Formation. Annual Review Pharmacology Toxicology. 2005;45:413–438. doi: 10.1146/annurev.pharmtox.45.120403.100045.
Newman JW, Morisseau C, Hammock BD. Epoxide hydrolases: their roles and interactions with lipid metabolism. Progress Lipid Research. 2005;44(1):1–51. doi: 10.1016/j.plipres.2004.10.001.
Wang T, Fu X, Chen Q, Patra JK, Wang D, Wang Z, Gai Z. Arachidonic Acid Metabolism and Kidney Inflammation. International Journal Molecular Science. 2019;20(15):31–28. doi: 10.3390/ijms20153683.
Das Mahapatra A, Choubey R, Datta B. Small Molecule Soluble Epoxide Hydrolase Inhibitors in Multitarget and Combination Therapies for Inflammation and Cancer. Molecules. 2020;25(23):1-24. doi: 10.3390/molecules25235488.
Guo Z, Johnson V, Barrera J, Porras M, Hinojosa D, Hernández I, McGarrah P, Potter DA. Targeting cytochrome P450-dependent cancer cell mitochondria: cancer associated CYPs and where to find them. Cancer Metastasis Review. 2018;37(2-3):409–423. doi: 10.1007/s10555-018-9749-6.
Rand AA, Rajamani A, Kodani SD, Harris TR, Schlatt L, Barnych B, Passerini AG, Hammock BD. Epoxyeicosatrienoic acid (EET)-stimulated angiogenesis is mediated by epoxy hydroxyeicosatrienoic acids (EHETs) formed from COX-2. Journal Lipid Research. 2019;60(12):1996–2005. doi: 10.1194/jlr.M094219.
Imig JD. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiology Review. 2012;92(1):101–30. doi: 10.1152/physrev.00021.2011.
Zhang G, Kodani S, Hammock BD. Stabilized epoxygenated fatty acids regulate inflammation, pain, angiogenesis and cancer. Progress Lipid Research. 2014;53(1):108–123. doi:
1016/j.plipres.2013.11.003.
Inceoglu B, Jinks SL, Schmelzer KR, Waite T, Kim IH, Hammock BD. Inhibition of soluble epoxide hydrolase reduces LPS-induced thermal hyperalgesia and mechanical allodynia in a rat model of inflammatory pain. Life Sciences. 2006;79(24):2311–2319. doi: 10.1016/j.lfs.2006.07.031.
Terashvili M, Tseng LF, Wu H, Narayanan J, Hart LM, Falck JR, Pratt PF, Harder DR. Antinociception Produced by 14 , 15-Epoxyeicosatrienoic Acid Is Mediated by the Activation of b-Endorphin and Met-Enkephalin in the Rat Ventrolateral Periaqueductal Gray. Journal Pharmacology Experimetnal Therapeutics. 2008;326(2):614–622. doi: 10.1124/jpet.108.136739.
Brenneis C, Sisignano M, Coste O, Altenrath K, Fischer MJ, Angioni C, Fleming I, Brandes, RP, Reeh PW, Woolf CJ, Geisslinger G, Scholich K. Soluble epoxide hydrolase limits mechanical hyperalgesia during inflammation. Molecular Pain. 2011;7(1):1–13. doi: 10.1186/1744-8069-7-78.
Sisignano M, Park C-K, Angioni C, Zhang DD, von Hehn C, Cobos EJ, Ghasemlou N, Xu Z-Z, Kumaran V, Lu R, Grant A, Fischer MJM, Schmidtko A, Reeh P, Ji R-R, Woolf CJ, Geisslinger G, Scholich K, Brenneis C. 5,6-EET Is Released upon Neuronal Activity and Induces Mechanical Pain Hypersensitivity via TRPA1 on Central Afferent Terminals. Journal Neurosciences. 2012;32(18):6364–6372. doi: 10.1523/jneurosci.5793-11.2012
Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16(2):109–10. doi: 10.1016/0304-3959(83)90201-4.
Randall LO, Selitto JJ. A method for measurement of analgesia activity on inflamed tissue. Archives International Pharmacodynamic. 1957;111(4):409–19. PMID: 13471093
Kawabata A, Nishimura Y, Takagi H. L-Leucyl-L-arginine, naltrindole and D-arginine block antinociception elicited by L-arginine in mice with carrageenin-induced hyperalgesia. British Journal Pharmacology. 1992;107(4):1096–1101. doi: 10.1111/j.1476-5381.1992.tb13413.x.
Kassuya CAL, Ferreira J, Claudino RF, Calixto JB. Intraplantar PGE2 causes nociceptive behaviour and mechanical allodynia: The role of prostanoid e receptors and protein kinases. British Journal Pharmacology. 2007;150(6):727–737. doi: 10.1038/sj.bjp.0707149.
Kawabata A. Prostaglandin E2 and pain--an update. Biological Pharmaceutic Bulletin. 2011;34(8):1170–3. doi: 10.1248/bpb.34.1170.
Schaible HG, Schmidt RF. Excitation and sensitization of fine articular afferents from cat’s knee joint by prostaglandin E2. Journal Physiology. 1988;403(1):91–104. doi: 10.1113/jphysiol.1988.sp017240.
Vinegar R, Truax JF, Selph JL, Johnston PR, Venable AL, McKenzie KK. Pathway to carrageenan-induced inflammation in the hind limb of the rat. Federation Proceedings. 1987;46(1):118–26. PMID: 3100339
Node K, Huo Y, Ruan X, Yang B, Spiecker M, Ley K, Zeldin DC, Liao JK. Anti-inflammatory Properties of Cytochrome P450 Epoxygenase- Derived Eicosanoids. Science. 1999;285(5431):1276–1279. doi: 10.1126/science.285.5431.1276.
Schmelzer KR, Kubala L, Newman JW, Kim I-H, Eiserich JP, Hammock BD. Soluble epoxide hydrolase is a therapeutic target for acute inflammation. Proceedings National Academy Sciences USA. 2005;102(28):9772–9777. doi: 10.1073/pnas.0503279102.
Potente M, Fisslthaler B, Busse R, Fleming I. 11,12-Epoxyeicosatrienoic acid-induced inhibition of FOXO factors promotes endothelial proliferation by down-regulating p27Kip1. Journal Biology Chemistry. 2003;278(32):29619–29625. doi: 10.1074/jbc.M305385200.
Potente M, Michaelis UR, Fisslthaler B, Busse R, Fleming I. Cytochrome P450 2C9-induced endothelial cell proliferation involves induction of mitogen-activated protein (MAP) kinase phosphatase-1, inhibition of the c-Jun N-terminal kinase, and up-regulation of cyclin D1. Journal Biology Chemistry. 2002;277(18):15671–15676. doi: 10.1074/jbc.M110806200.
Wang H, Lin L, Jiang J, Wang Y, Lu ZY, Bradbury JA, Lih FB, Wang DW, Zeldin DC. Up-Regulation of Endothelial Nitric-Oxide Synthase by Endothelium-Derived Hyperpolarizing Factor Involves Mitogen-Activated Protein Kinase and Protein Kinase C Signaling Pathways. Journal Pharmacology Experimental Therapethics. 2003;307(2):753–764. doi: 10.1124/jpet.103.052787.
Chen Y, Falck JR, Manthati VL, Jat JL, Campbell WB. 20-Iodo-14,15-epoxyeicosa-8(Z)-enoyl-3-azidophenylsulfonamide: photoaffinity labeling of a 14,15-epoxyeicosatrienoic acid receptor. Biochemistry. 2011;50(18):3840–8. doi: 10.1021/bi102070w.
Park SK, Herrnreiter A, Pfister SL, Gauthier KM, Falck BA, Falck JR, Campbell WB. GPR40 is a low-affinity epoxyeicosatrienoic acid receptor in vascular cells. Journal Biology Chemistry. 2018;293(27):10675–10691. doi: 10.1074/jbc.RA117.001297.
Lahvic JL, Ammerman M, Li P, Blair MC, Stillman ER, Fast EM, Robertson AL, Christodoulou C, Perlin JR, Yang S, Chiang N, Norris PC, Daily ML, Redfield SE, Chan IT, Chatrizeh M, Chase ME, Weis O, Zhou Y, Serhan CN, Zon LI. Specific oxylipins enhance vertebrate hematopoiesis via the receptor GPR132. Proceedings National Academy Sciences USA. 2018;115(37):9252–9257. doi: 10.1073/pnas.1806077115.
Gauthier KM, Falck JR, Reddy LM, Campbell WB. 14,15-EET analogs: characterization of structural requirements for agonist and antagonist activity in bovine coronary arteries. Pharmacology Research. 2004;49(6):515–524. doi: 10.1016/j.phrs.2003.09.014.
Gauthier KM, Deeter C, Krishna UM, Reddy YK, Bondlela M, Falck JR, Campbell WB. 14,15-Epoxyeicosa-5(Z)-enoic acid: A selective epoxyeicosatrienoic acid antagonist that inhibits endothelium-dependent hyperpolarization and relaxation in coronary arteries. Circulatory Research. 2002;90(9):1028–1036. doi: 10.1161/01.res.0000018162.87285.f8.
Gross GJ, Gauthier KM, Moore J, Falck JR, Hammock BD, Campbell WB, Nithipatikom K. Effects of the selective EET antagonist, 14,15-EEZE, on cardioprotection produced by exogenous or endogenous EETs in the canine heart. American Journal Physiology Heart Circulation Physiology. 2008;294(6):H2838–H2844. doi: 10.1152/ajpheart.00186.2008.
Nithipatikom K, Brody DM, Tang AT, Manthati VL, Falck JR, Williams CL, Campbell WB. Inhibition of carcinoma cell motility by epoxyeicosatrienoic acid (EET) antagonists. Cancer Science. 2010;101(12):2629–36. doi: 10.1111/j.1349-7006.2010.01713.x.
DOI: https://doi.org/10.15416/pcpr.v9i2.57750
Refbacks
- There are currently no refbacks.