Economic Evaluations of Artificial Intelligence Implementation in Diabetic Retinopathy Screening

Ahmad Ahmad, Neily Zakiyah, Auliya A. Suwantika

Abstract


Diabetic retinopathy (DR) is a common complication of diabetes that damages retinal blood vessels and can lead to vision impairment. The application of Artificial Intelligence (AI) in DR screening offers a promising alternative to conventional methods. However, further research is crucial to determine the cost-effectiveness of this intervention.

This study systematically reviewed economic evaluations of AI interventions in DR screening using data from PubMed and ScienceDirect (2014–2023). Studies in various healthcare settings assessing cost-effectiveness outcomes, such as incremental cost-effectiveness ratio (ICER) and net monetary benefit, were included. The CHEERS (Consolidated Health Economic Evaluation Reporting Standards) checklist was used to assess the reporting quality of included studies.

AI intervention can potentially provide accurate diagnoses by performing complex data analysis quickly and consistently. Despite initial higher costs, AI screening often led to higher quality-adjusted life years (QALYs) and improved healthcare resource allocation, particularly in underserved areas. From several perspectives, AI screening is cost-effective compared to manual screening, which has a lower ICER. Seven out of eight articles concluded that using AI for screening is cost-effective. However, challenges in generalizing AI models across diverse populations suggest a need for further validation to prevent diagnostic bias and ensure healthcare equity. Specifically, the hybrid use of manual screening with AI assistance is more cost-effective than the other comparison methods.

AI can improve diagnoses like DR through quick data analysis and accuracy, but human guidance is still needed for algorithm development and decision-making. Combining AI with human involvement can lead to more cost-effective interventions.


Keywords


AI interventions; cost-effective; algorithm; diabetes; ICER

Full Text:

PDF

References


Reference

Lovic D, Piperidou A, Zografou I, Grassos H, Pittaras A, Manolis A. The Growing Epidemic of Diabetes Mellitus. Curr Vasc Pharmacol. 2019;18(2):104-109. doi:10.2174/1570161117666190405165911

Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol. 2020;16(7):377-390. doi:10.1038/s41581-020-0278-5

Cavanaugh KL. Health literacy in diabetes care: explanation, evidence and equipment. Diabetes Manag (Lond). 2011;1(2):191.

Shi J, Zhang C, Zhao Q, Zhang X, Guo L, Jia T. Experience of patients with diabetic retinopathy: A qualitative study. J Adv Nurs. 2023;79(5):1789-1798.

Lang GE. Diabetic Retinopathy. Vol 39. Karger Medical and Scientific Publishers.; 2007.

Sagoo MK, Gnudi L. Diabetic nephropathy: an overview. Diabetic Nephropathy: Methods and Protocols. Published online 2020:3-7.

Teo ZL, Tham YC, Yu M, et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. Ophthalmology. 2021;128(11):1580-1591. doi:10.1016/j.ophtha.2021.04.027

Vujosevic S, Aldington SJ, Silva P, et al. Screening for diabetic retinopathy: new perspectives and challenges. Lancet Diabetes Endocrinol. 2020;8(4):337-347. doi:10.1016/S2213-8587(19)30411-5

Jalalova D, Normatova N, Shernazarov F. Genetic markers for the development of diabetic retinopathy. Science and Innovation. 2022;1(8):919-923.

Xie Y, Gunasekeran D V., Balaskas K, et al. Health economic and safety considerations for artificial intelligence applications in diabetic retinopathy screening. Transl Vis Sci Technol. 2020;9(2):1-12. doi:10.1167/tvst.9.2.22

Ruamviboonsuk P, Chantra S, Seresirikachorn K, Ruamviboonsuk V, Sangroongruangsri S. Economic Evaluations of Artificial Intelligence in Ophthalmology. Asia Pac J Ophthalmol (Phila). 2021;10(3):307-316. doi:10.1097/APO.0000000000000403

Wang SY, Andrews CA, Herman WH, Gardner TW, Stein JD. Incidence and Risk Factors for Developing Diabetic Retinopathy among Youths with Type 1 or Type 2 Diabetes throughout the United States. In: Ophthalmology. Vol 124. Elsevier Inc.; 2017:424-430. doi:10.1016/j.ophtha.2016.10.031

Matuszewski W, Stefanowicz-Rutkowska MM, Szychlińska M, Bandurska-Stankiewicz E. Differences in risk factors for diabetic retinopathy in type 1 and type 2 diabetes mellitus patients in north-east Poland. Medicina (Lithuania). 2020;56(4). doi:10.3390/medicina56040177

Bokhary K, Aljaser F, Abudawood M, et al. Role of Oxidative Stress and Severity of Diabetic Retinopathy in Type 1 and Type 2 Diabetes. Ophthalmic Res. 2021;64(4):613-621. doi:10.1159/000514722

Fenwick EK, Xie J, Ratcliffe J, et al. The impact of diabetic retinopathy and diabetic macular edema on health-related quality of life in type 1 and type 2 diabetes. Invest Ophthalmol Vis Sci. 2012;53(2):677-684. doi:10.1167/iovs.11-8992

Tan SY, Mei Wong JL, Sim YJ, et al. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes and Metabolic Syndrome: Clinical Research and Reviews. 2019;13(1):364-372. doi:10.1016/j.dsx.2018.10.008

Arneth B, Arneth R, Shams M. Metabolomics of type 1 and type 2 diabetes. Int J Mol Sci. 2019;20(10). doi:10.3390/ijms20102467

Aiello LP, Odia I, Glassman AR, et al. Comparison of Early Treatment Diabetic Retinopathy Study Standard 7-Field Imaging with Ultrawide-Field Imaging for Determining Severity of Diabetic Retinopathy. JAMA Ophthalmol. 2019;137(1):65-73. doi:10.1001/jamaophthalmol.2018.4982

Pearson ER. Type 2 diabetes: a multifaceted disease. Diabetologia. 2019;62(7):1107-1112. doi:10.1007/s00125-019-4909-y

Gregory JM, Slaughter JC, Duffus SH, et al. COVID-19 severity is tripled in the diabetes community: A prospective analysis of the pandemic’s impact in type 1 and type 2 diabetes. Diabetes Care. 2021;44(2):526-532. doi:10.2337/dc20-2260

Bolla AM, Caretto A, Laurenzi A, Scavini M, Piemonti L. Low-carb and ketogenic diets in type 1 and type 2 diabetes. Nutrients. 2019;11(5). doi:10.3390/nu11050962

Gunasekeran D V., Ting DSW, Tan GSW, Wong TY. Artificial intelligence for diabetic retinopathy screening, prediction and management. Curr Opin Ophthalmol. 2020;31(5):357-365. doi:10.1097/ICU.0000000000000693

Cai X, Chen Y, Yang W, Gao X, Han X, Ji L. The association of smoking and risk of diabetic retinopathy in patients with type 1 and type 2 diabetes: a meta-analysis. Endocrine. 2018;62(2):299-306. doi:10.1007/s12020-018-1697-y

Rezk E, Eltorki M, El-Dakhakhni W. Leveraging Artificial Intelligence to Improve the Diversity of Dermatological Skin Color Pathology: Protocol for an Algorithm Development and Validation Study. JMIR Res Protoc. 2022;11(3). doi:10.2196/34896

Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1). doi:10.1186/s12916-019-1426-2

Lee CI, Houssami N, Elmore JG, Buist DSM. Pathways to breast cancer screening artificial intelligence algorithm validation. Breast. 2020;52:146-149. doi:10.1016/j.breast.2019.09.005

Vujosevic S, Muraca A, Alkabes M, et al. Early Microvascular and Neural Changes in Patients with Type 1 and Type 2 Diabetes Mellitus without Clinical Signs of Diabetic Retinopathy.

Huang XM, Yang BF, Zheng WL, et al. Cost-effectiveness of artificial intelligence screening for diabetic retinopathy in rural China. BMC Health Serv Res. 2022;22(1). doi:10.1186/s12913-022-07655-6

Srisubat A, Kittrongsiri K, Sangroongruangsri S, et al. Cost-Utility Analysis of Deep Learning and Trained Human Graders for Diabetic Retinopathy Screening in a Nationwide Program. Ophthalmol Ther. Published online April 1, 2023. doi:10.1007/s40123-023-00688-y

Watson D. The Rhetoric and Reality of Anthropomorphism in Artificial Intelligence. Minds Mach (Dordr). 2019;29(3):417-440. doi:10.1007/s11023-019-09506-6

Husereau D, Drummond M, Petrou S, et al. Consolidated health economic evaluation reporting standards (CHEERS) statement. Value in Health. 2013;16(2):e1. doi:10.1016/j.jval.2013.02.010

Javan-Noughabi J, Rezapour A, Hajahmadi M, Alipour V. Cost-effectiveness of single-photon emission computed tomography for diagnosis of coronary artery disease: A systematic review of the key drivers and quality of published literature. Clin Epidemiol Glob Health. 2019;7(3):389-395. doi:10.1016/j.cegh.2018.07.008

Del Pino R, Díez-Cirarda M, Ustarroz-Aguirre I, et al. Costs and effects of telerehabilitation in neurological and cardiological diseases: A systematic review. Front Med (Lausanne). 2022;9. doi:10.3389/fmed.2022.832229

Fuller SD, Hu J, Liu JC, et al. Five-Year Cost-Effectiveness Modeling of Primary Care-Based, Nonmydriatic Automated Retinal Image Analysis Screening Among Low-Income Patients With Diabetes. J Diabetes Sci Technol. 2022;16(2):415-427. doi:10.1177/1932296820967011

Langley PC, McKenna SP. Measurement, modeling and QALYs. F1000Res. 2020;9:1048. doi:10.12688/f1000research.25039.1

Fatima M, Pachauri P, Akram W, Parvez M, Ahmad S, Yahya Z. Enhancing retinal disease diagnosis through AI: Evaluating performance, ethical considerations, and clinical implementation. Informatics and Health. 2024;1(2):57-69. doi:10.1016/j.infoh.2024.05.003

Li H, Li G, Li N, et al. Cost-effectiveness analysis of artificial intelligence-based diabetic retinopathy screening in rural China based on the Markov model. PLoS One. 2023;18(11):e0291390. doi:10.1371/journal.pone.0291390

Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology. 2019;103(2):167-175. doi:10.1136/bjophthalmol-2018-313173

Rizvi A, Rizvi F, Lalakia P, et al. Is Artificial Intelligence the Cost-Saving Lens to Diabetic Retinopathy Screening in Low- and Middle-Income Countries? Cureus. Published online September 19, 2023. doi:10.7759/cureus.45539

Xie Y, Nguyen QD, Hamzah H, et al. Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study. Lancet Digit Health. 2020;2(5):e240-e249. doi:10.1016/S2589-7500(20)30060-1

Lin S, Ma Y, Xu Y, et al. Artificial Intelligence in Community-Based Diabetic Retinopathy Telemedicine Screening in Urban China: Cost-effectiveness and Cost-Utility Analyses With Real-world Data. JMIR Public Health Surveill. 2023;9:e41624. doi:10.2196/41624

Wolf RM, Channa R, Abramoff MD, Lehmann HP. Cost-effectiveness of Autonomous Point-of-Care Diabetic Retinopathy Screening for Pediatric Patients with Diabetes. JAMA Ophthalmol. 2020;138(10):1063-1069. doi:10.1001/jamaophthalmol.2020.3190

Tufail A, Rudisill C, Egan C, et al. Automated Diabetic Retinopathy Image Assessment Software: Diagnostic Accuracy and Cost-Effectiveness Compared with Human Graders. Ophthalmology. 2017;124(3):343-351. doi:10.1016/j.ophtha.2016.11.014




DOI: https://doi.org/10.15416/pcpr.v9i3.60068

Refbacks

  • There are currently no refbacks.


                                                                         
Pharmacology and Clinical Pharmacy Research is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
 
                                                                      VIEW VISITOR STATS