Comprehensive In Silico Analysis Of Bioactive Compounds From Pyrrosia piloselloides Leaves As Xanthine Oxidase Inhibitors
Abstract
Keywords
Full Text:
PDFReferences
Nehal S, Hussain SA. Gout- from a primary care perspective. 2024;V(I):27–34.
Adolph R. The management of gout: Much has changed. Aust Fam Physician [Internet]. 2016;45(5):1–23. Available from: https://search.informit.org/doi/abs/10.3316/INFORMIT.092362082752494
Premanath M. Acute Gout – A Harbinger for More Serious Outcome. APIK J Intern Med. 2022;10(1):3–7.
Noce A, Di Lauro M, Di Daniele F, Zaitseva AP, Marrone G, Borboni P, et al. Natural bioactive compounds useful in clinical management of metabolic syndrome. Nutrients. 2021;13(2):1–37.
Wu J, Alhamoud Y, Lv S, Feng F, Wang J. Beneficial properties and mechanisms of natural phytochemicals to combat and prevent hyperuricemia and gout. Trends Food Sci Technol. 2023 Aug 1;138:355–69.
Frazaei MH, Nouri R, Arefnezhad R, Pour PM, Naseri M, Assar S. A Review of Medicinal Plants and Phytochemicals for the Management ofGout. Curr Rheumatol Rev [Internet]. 2023 Oct 13 [cited 2024 Dec 19];20(3):223–40. Available from: https://www.eurekaselect.com/article/135137
Cheng D, Zhang Y, Gao D, Zhang H. Antibacterial and anti-inflammatory activities of extract and fractions from Pyrrosia petiolosa (Christ et Bar.) Ching. J Ethnopharmacol. 2014 Sep 11;155(2):1300–5.
Zhang X, Liu Y, Deng G, Huang B, Kai G, chen K, et al. A Purified Biflavonoid Extract From Selaginella moellendorffii Alleviates Gout Arthritis via NLRP3/ASC/Caspase-1 Axis Suppression. Front Pharmacol [Internet]. 2021 May 17 [cited 2024 Dec 19];12:676297. Available from: www.frontiersin.org
Xiao N, Qu J, He S, Huang P, Qiao Y, Li G, et al. Exploring the Therapeutic Composition and Mechanism of Jiang-Suan-Chu-Bi Recipe on Gouty Arthritis Using an Integrated Approach Based on Chemical Profile, Network Pharmacology and Experimental Support Using Molecular Cell Biology. Front Pharmacol [Internet]. 2020 [cited 2024 Dec 19];10. Available from: https://pubmed.ncbi.nlm.nih.gov/32082152/
Chen W Di, Zhao YL, Sun WJ, He YJ, Liu YP, Jin Q, et al. “Kidney Tea” and Its Bioactive Secondary Metabolites for Treatment of Gout. J Agric Food Chem [Internet]. 2020 Aug 26 [cited 2024 Dec 19];68(34):9131–8. Available from: https://pubmed.ncbi.nlm.nih.gov/32786873/
Wang S, Liu W, Wei B, Wang A, Wang Y, Wang W, et al. Traditional herbal medicine: Therapeutic potential in acute gouty arthritis. J Ethnopharmacol. 2024 Aug 10;330:118182.
Pinzi L, Rastelli G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int J Mol Sci [Internet]. 2019 Sep 1 [cited 2024 Dec 19];20(18). Available from: https://pubmed.ncbi.nlm.nih.gov/31487867/
Sul’ain MD, Zakaria F, Johan MF. Anti-proliferative effects of methanol and water extracts of Pyrrosia piloselloides on the hela human cervical carcinoma cell line. Asian Pacific J Cancer Prev. 2019;20(1):185–92.
Agoni C, Olotu FA, Ramharack P, Soliman ME. Druggability and drug-likeness concepts in drug design: are biomodelling and predictive tools having their say? J Mol Model [Internet]. 2020 Jun 1 [cited 2024 Dec 19];26(6). Available from: https://pubmed.ncbi.nlm.nih.gov/32382800/
Lipinski CA. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004 Dec 1;1(4):337–41.
Jayaram B, Singh T, Mukherjee G, Mathur A, Shekhar S, Shekhar V. Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. BMC Bioinformatics [Internet]. 2012 Dec 13 [cited 2024 Dec 19];13 Suppl 17(17):1–13. Available from: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-13-S17-S7
Ballante F. Protein-Ligand Docking in Drug Design: Performance Assessment and Binding-Pose Selection. Methods Mol Biol [Internet]. 2018 [cited 2024 Dec 19];1824:67–88. Available from: https://link.springer.com/protocol/10.1007/978-1-4939-8630-9_5
Pan Y, Lu Z, Li C, Qi R, Chang H, Han L, et al. Molecular Dockings and Molecular Dynamics Simulations Reveal the Potency of Different Inhibitors against Xanthine Oxidase. ACS Omega. 2021;6(17):11639–49.
Zhao J, Huang L, Sun C, Zhao D, Tang H. Studies on the structure-activity relationship and interaction mechanism of flavonoids and xanthine oxidase through enzyme kinetics, spectroscopy methods and molecular simulations. Food Chem [Internet]. 2020;323(February):126807. Available from: https://doi.org/10.1016/j.foodchem.2020.126807
Syahputra D, Ysrafil Y, Alexandra FD, Praja RK, Fatmaria F, Pratika RA. Network pharmacology combined with molecular docking and molecular dynamics to verify the therapeutic potential of mung beans (Vigna radiata) against prostate cancer. Beni-Suef Univ J Basic Appl Sci [Internet]. 2024;13(1). Available from: https://doi.org/10.1186/s43088-024-00552-3
Pollastri MP. Overview on the Rule of Five. Curr Protoc Pharmacol [Internet]. 2010 Jun [cited 2024 Dec 19];Chapter 9(SUPPL. 49). Available from: https://pubmed.ncbi.nlm.nih.gov/22294375/
Kim J, Jesus O De. Medication Routes of Administration. StatPearls [Internet]. 2023 Aug 23 [cited 2024 Dec 19]; Available from: https://www.ncbi.nlm.nih.gov/books/NBK568677/
Azman M, Sabri AH, Anjani QK, Mustaffa MF, Hamid KA. Intestinal Absorption Study: Challenges and Absorption Enhancement Strategies in Improving Oral Drug Delivery. Pharmaceuticals (Basel) [Internet]. 2022 Aug 1 [cited 2024 Dec 19];15(8). Available from: https://pubmed.ncbi.nlm.nih.gov/36015123/
Alcaide E, Gao Z, Ke G, Li Y, Zhang L, Zheng H, et al. Uni-Mol Docking V2: Towards Realistic and Accurate Binding Pose Prediction. 2024 May 20 [cited 2024 Dec 19]; Available from: http://arxiv.org/abs/2405.11769
Cao H, Hall J, Hille R. Substrate orientation and specificity in xanthine oxidase: crystal structures of the enzyme in complex with indole-3-acetaldehyde and guanine. Biochemistry [Internet]. 2014 Jan 28 [cited 2024 Dec 21];53(3):533–41. Available from: https://pubmed.ncbi.nlm.nih.gov/24397336/
Dong C, Montes M, Al-Sawai WM. Xanthine oxidoreductase inhibition - A review of computational aspect. J Theor Comput Chem [Internet]. 2020 Jun 1 [cited 2024 Dec 21];19(4). Available from: https://www.researchgate.net/publication/342099519_Xanthine_oxidoreductase_inhibition_-_A_review_of_computational_aspect
Zhang B, Dai X, Bao Z, Mao Q, Duan Y, Yang Y, et al. Targeting the subpocket in xanthine oxidase: Design, synthesis, and biological evaluation of 2-[4-alkoxy-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid derivatives. Eur J Med Chem [Internet]. 2019 Nov 1 [cited 2024 Dec 21];181. Available from: https://pubmed.ncbi.nlm.nih.gov/31376568/
Kumar R, Joshi G, Kler H, Kalra S, Kaur M, Arya R. Toward an Understanding of Structural Insights of Xanthine and Aldehyde Oxidases: An Overview of their Inhibitors and Role in Various Diseases. Med Res Rev [Internet]. 2018 Jul 1 [cited 2024 Dec 21];38(4):1073–125. Available from: https://pubmed.ncbi.nlm.nih.gov/28672082/
Schwarz G. Molybdenum cofactor and human disease. Curr Opin Chem Biol [Internet]. 2016 Apr 1 [cited 2024 Dec 21];31:179–87. Available from: https://pubmed.ncbi.nlm.nih.gov/27055119/
DOI: https://doi.org/10.15416/pcpr.v10i2.60233
Refbacks
- There are currently no refbacks.