The influence of hyperbaric oxygen therapy (HBOT) to intercausal relationship between blood vessels, osteoblast, and new bone formation during maxillary suture expansion
Abstract
Introduction: Expansion appliance that can imply tooth movement and opening maxilla suture might affect the blood vessels, bone cells, and formation of the new bone. HBOT accelerated the rate of osteoblast differentiation leading to an increase in bone formation during osteonecrosis. Research about HBOT during maxillary suture expansion has never been investigated. The purpose of this research was to correlate the blood vessels number, osteoblast by administered 2.4 ATA HBOT from day 8-14 to imply new bone formation during maxillary suture expansion. Methods: Eighteen male guinea pigs with randomised post-test only control group design divided into 3 groups. Negative control group K(-), positive control with expansion appliance K(+), expansion appliance and HBOT (P). After 14 days guinea pigs were decapitated. Histological slide of the blood vessels number, osteoblast, and new bone formation were examined under a light microscope then were analysed by regression test. Results: Descriptive test showed increasing blood vessels number, osteoblast, and new bone formation on the administration of HBOT during maxillary suture expansion. Regression test showed that there was a strong correlation between the blood vessels number and osteoblast to the new bone formation with R=6.95 during maxillary suture expansion. Conclusion: 2.4 ATA HBOT influences the intercausal relationship between increasing blood vessels number, increasing osteoblast, and new bone formation during maxillary suture expansion.
Keywords
Full Text:
PDFReferences
Nishio C, Huynh N. Skeletal malocclusion and genetic expression: An evidence based review. J dent Sleep med 2016;3(2):57-63. DOI:10.15331/jdsm.5720
Agarwal A, Mathur R. Maxillary expansion. Int J Clin Pediatr Dent. 2010;3:139–46. DOI: 10.5005/jp-journals-10005-1069.
Eldin NFS, Elkordy SA, Fayed MS, Elbeialy A, Eid FH. Transverse skeletal effects of rapid maxillary expansion in pre and post pubertal subjects: A systematic review. Open Access Maced J Med Sci. 2019;2(8):1-11. DOI: 10.3889/oamjms.2019.080
Caprioglio A, Fastuca R, Zecca PA, Beretta M, Mangano C, Piattelli A, et al. Cellular midpalatal suture changes after rapid maxillary expansion in growing subjects: A case report. Int J Mol Sci. 2017;18(3):615. DOI:10.3390/ijms18030615
Lafage-Proust M-H, Roche B, Langer M, Cleret D, Vanden Bossche A, Olivier T, et al. Assessment of bone vascularization and its role in bone remodeling. Bonekey Rep. 2015;4: 662. DOI: 10.1038%2Fbonekey.2015.29
Huda N. Pengaruh hiperbarik oksigen (hbo) terhadap perfusi perifer luka gangren pada penderita dm di RSAL dr. Ramelan Surabaya. Thesis. Jakarta: Universitas Indonesia; 2010: 3.
Gokce S, Osman Bengi A, Akin E, Karacay S, Sagdic D, Kurkcu M et al. Effects of hyperbaric oxygen during experimental tooth movement. Angle Orthod. 2008;78(2):304–8. DOI: 10.2319/022507-96.1
Inokuchi T, Kawamoto T, Aoki K, Aoki A, Nagahama K, Baba Y. The effects of hyperbaric oxygen on tooth movement into the regenerated area after distraction osteogenesis. Cleft Palate-Craniofacial J. 2010;47(4):382–92. DOI: 10.1597%2F09-016.1
Thom SR. Hyperbaric oxygen: Its mechanisms and efficacy. Plast Reconstr Surg. 2011;127(1):131-41. DOI: 10.1097%2FPRS.0b013e3181fbe2bf
Al Hadi H, Smerdon GR, Fox SW. Hyperbaric oxygen therapy accelerates osteoblast differentiation and promotes bone formation. J Dent. 2015;43(3):382–8. DOI: 10.1016/j.jdent.2014.10.006. Epub 2014 Oct 23
Brahmanta A, Sutjipto, Narmada IB. Histological changes during orthodontic tooth movement due to hyperbaric oxygen therapy. 2016;49(2):63-66. DOI: 10.20473/j.djmkg.v49.i2.p63-66
Sutomo S, Rahardjo P, Sjafei A. The effect of hyperbaric oxygen in increasing the amount of osteoblast cells on remodeling process during tooth movement on male adult Cavia cobaya. Orthod Dent J. 2012;3(1):1-3.
Angelieri F, Cevidanes LHS, Franchi L, Gonçalves JR, Benavides E, Mc Namara JA. Midpalatal suture maturation: Classification method for individual assessment before rapid maxillary expansion. Am J Orthod Dentofac Orthop. 2013;144(5):759–69. DOI: 10.1016%2Fj.ajodo.2013.04.022
Pereira JDS, Jacob HB, Locks A, Brunetto M, Ribeiro GLU. Evaluation of the rapid and slow maxillary expansion using cone-beam computed tomography: A randomized clinical trial. Dent Press J Orthod Mar-Apr 2017;22(2):61–68. DOI: 10.1590/2177-6709.22.2.061-068.oar
Valdivia LMJ, Carrillo VM, Cardenas YAR, Da Silveira HLD, Guillén LEA. Midpalatal suture maturation stage assessment in adolescents and young adults using cone-beam computed tomography. Prog Orthod 2019;20(38) DOI: 10.1186/s40510-019-0291-z
Kwaka KH, Kima SS, Kima YI, Kima YD. Quantitative evaluation of midpalatal suture maturation via fractal analysis. Korean J Orthod 2016;46(5):323-0 DOI: 10.4041/kjod.2016.46.5.323
Hahn W, Fricke-Zech S, Fialka-Fricke J, Dullin C, Zapf A, Gruber R et al. Imaging of the midpalatal suture in a porcine model: Flat-panel volume computed tomography compared with multislice computed tomography. Oral Surgery, Oral Med Oral Pathol Oral Radiol Endodontology. 2009;108(3):443–9. DOI: 10.1016/j.tripleo.2009.02.034. Epub 2009 May 22
Bright JA. The Importance of Craniofacial Sutures in Biomechanical Finite Element Models of the Domestic Pig. Plos One. 2012; 21(2) DOI: 10.1371/journal.pone.0031769
Fernanda Angelieri F, Franchi L, Cevidanes LHS, Silva BB, McNamara JA. Prediction of rapid maxillary expansion by assessing the maturation of the midpalatal suture on cone beam CT. Dental Press J Orthod. 2016;21(6):115-125. DOI: 10.1590/2177-6709.21.6.115-125.sar
Li M, Zhang Z, Gu X, Ye Jin Y, Feng C, Yang S et al. MicroRNA-21 affects mechanical force–induced midpalatal suture remodeling. Cell Proliferation in Basic and Clinical Science. 2019;00:e1297. DOI: 10.1111/cpr.12697
Kanczler JM, Oreco RO. Bone. Osteogenesis and Angiogenesis: the Potential for Engineering Bone. Eur Cells Mater. 2008;(15):100–14. DOI: 10.22203/eCM
Filipowska J, Tomaszewski KA, Niedzwiedzki Ł, Walocha JA, Niedzwiedzki T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis. 2017;20(3):291–302. DOI: 10.1007/s10456-017-9541-1. Epub 2017 Feb 13
Saran U, Gemini Piperni S, Chatterjee S. Role of angiogenesis in bone repair. Arch Biochem Biophys. 2014;1(561):109-17. DOI: 10.1016/j.abb.2014.07.006. Epub 2014 Jul 14.
Zainal ASH, Yamamoto Z, Zainol Abidin LZ, Megat Abdul Wahab R, Zainal AZ. Cellular and molecular changes in orthodontic tooth movement. Scientific World J. 2011;11:1788–803. DOI: 10.1100%2F2011%2F761768
Jung S, Wermker K, Poetschik H, Ziebura T, Kleinheinz J. The impact of hyperbaric oxygen therapy on serological values of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF). Head Face Med. 2010;6(1):29. DOI: 10.1186%2F1746-160X-6-29
Patil AS, Sable RB, Kothari RM. Occurrence, biochemical profile of vascular endothelial growth factor (VEGF) isoforms and their functions in endochondral ossification. Journal of Cellular Physiology. 2012;227(4):1298-308. DOI: 10.1002/jcp.22846
Thelen S, Sager M, Wild M, Grassmann JP, Schneppendahl J, Hakimi AR, et al. Hyperbaric Oxygen Therapy Improves Angiogenesis and Bone Formation in Critical Sized Diaphyseal Defects. J Orthop Res. 2015;33(4):513–20. DOI: 10.1002/jor.22805
Van Neck JW, Tuk B, Fijneman EMG, Redeker JJ, Talahatu EM, Tong M. Hyperbaric oxygen therapy for wound healing in diabetic rats: Varying efficacy after a clinically-based protocol. PLoS One. 2017;12(5). DOI: 10.1371/journal.pone.0177766.eCollection 2017.
Li J, Liu CY, Jiang YF, Wei XZ, Li JU. Proliferation and differentiation of human osteoblasts from a type 2 diabetic patient in vitro. Genet Mol Res. 2015;14(3):11292-9. DOI: 10.4238/2015.September.22.23
Hsieh CP, Chiou YL, Lin CY. Hyperbaric oxygen-stimulated proliferation and growth of osteoblasts may be mediated through the FGF-2MEKERK 12NF-κB and PKCJNK pathways. Connect Tissue Res. 2010;51(6):497–509. DOI: 10.3109/03008201003746679. Epub 2010 May 24..
DOI: https://doi.org/10.24198/pjd.vol32no1.19684
Refbacks
- There are currently no refbacks.
Visitor Stat
Padjadjaran Journal of Dentistry is licensed under Creative Commons Attribution 4.0 International License