The difference between calcium ion levels in saliva before and after consuming red dragon fruit (Hylocereus polyrhizus)
Abstract
Introduction: Saliva is a complex oral fluid that is secreted by the major and minor salivary glands which have a vital role in sustaining oral hard and soft tissues. The calcium ion is one of the inorganic components of saliva, which plays a vital role in maintaining the tooth enamel integrity through the remineralisation process. The compliance of calcium intake for the body and the enhancement of calcium ions in saliva can be affected by consumption of fruits that comprise lots of calcium. Consumption of fruit containing high calcium can increase buffer capacity, support remineralisation and prevent demineralisation. One of the fruits with rich calcium is red dragon fruit (Hylocereus polyrhizus). The purpose of this study was to analyse the difference between the salivary calcium ion level before and after consumption of red dragon fruit (Hylocereus polyrhizus) on the students of Faculty of Dentistry Syiah Kuala University batch 2017. Methods: This study was pre-experimental with one group pretest-posttest design. The number of subjects in this study was 32 people with one group pretest-posttest design. Saliva was collected by spitting method five times. Results: The average salivary calcium ion before consumption of red dragon fruit (Hylocereus polyrhizus) was 1.972, and the average value of salivary calcium ion after consumption of red dragon fruit (Hylocereus polyrhizus) was 2.378. Results of the statistical test using the paired t-test showed a significant difference of the salivary calcium ion before and after consumption of red dragon fruit (Hylocereus polyrhizus) with the p-value = 0.000 (p < 0.05). Conclusion: There is a difference of the salivary calcium ion level before and after consumption of red dragon fruit (Hylocereus polyrhizus).
Keywords
Full Text:
PDFReferences
Iorgulescu G. Saliva between normal and pathological. Important factors in determining systemic and oral health. J Med Life. 2009; 2(3): 303-7.
Porcheri C, Mitsiadis TA. Physiology, pathology and regeneration of salivary glands. Cells. 2019; 8(9): 976. DOI: 10.3390/cells8090976
Humphrey SP, Williamson RT. A review of saliva: Normal composition, flow and function. J Prosthet Dent. 2001; 85(2): 162-9. DOI: 10.1067/mpr.2001.113778
Indriana T. The relationship between salivary flow rate and calcium ion secretion in saliva. Stomatognatic J Ked Gi Unej. 2010; 7(2): 129–31.
Flint PW, Haughey BH, Lund VJ, Niparko JK, Robbins KT, Thomas JR, et al. Cummings Otolaryngology - Head and Neck Surgery. 6th ed. Philadelphia: Saunders-Elsevier; 2015. p. 1208.
De Almeida PDV, Grégio AMT, Machado MÂN, De Lima AAS, Azevedo LR. Saliva composition and functions: A comprehensive review. J Contemp Dent Pract. 2008; 9(3): 72–80. DOI: 10.5005/jcdp-9-3-72
Ramos-Casals M, Stone JH, Moutsopoulos HM. Sjogren’s Syndrome: Diagnosis and Therapeutics. London: Springer-Verlag; 2012. p. 522.
Cheah LK, Eid AM, Aziz A, Ariffin FD, Elmahjoubi A, Elmarzugi NA. Phytochemical properties and health benefits of Hylocereusundatus. Nanomed Nanotechnol. 2016; 1(1): 1-10. DOI: 10.23880/NNOA-16000103
Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium; Ross AC, Taylor CL, Yaktine AL, Del Valle B, eds. Dietary Reference Intakes for Calcium and Vitamin D. Washington (DC): National Academies Press (US); 2011.
Lin HS, Lin JR, Hu SW, Kuo HC, Yang YH. Association of dietary calcium, phosphorus, and magnesium intake with caries status among school children. Kaohsiung J Med Sci. 2014; 30(4): 206–12. DOI: 10.1016/j.kjms.2013.12.002
Jenkins GN, Hargreaves JA. Effect of eating cheese on Ca and P concentrations of whole mouth saliva and plaque. Caries Res. 1989; 23(3): 159-64. DOI: 10.1159/000261170
Rathee M, Singla S. Tamrakar AK. Calcium and oral health: A review. Int J Sci Res. 2013; 2(9): 335-6. DOI: 10.15373/22778179/SEP2013/116
Genesiska G, Pratiwi H. Extract of dragon fruit pulp (Hylocereus polyrhizus) potentially stain chromosomes of red onion (Allium ascalonicum). Biogenesis. 2018; 6(2): 93-7. DOI: 10.24252/bio.v6i2.4835
Zainoldin KH, Baba AS. The effect of Hylocereus polyrhizus and Hylocereus undatus on physicochemical, proteolysis, and antioxidant activity in yogurt. World Acad Sci Eng Tech. 2009; 60: 361-6.
Moore KL, Dalley AF, Agur AMR. Clinically Oriented Anatomy. 7th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2013. p. 944.
Devi TJ. Saliva – A potential diagnostic tool. IOSR J Dent Med Sci. 2014; 13(2): 52–57.
Kaur M. A study of analytical indicators of saliva. Ann Ess Dent. 2012; 4(4): 9–18.
Navazesh M, Kumar SKS. Measuring salivary flow: Challenges and oppurtinities. J Am Dent Assoc. 2008; 139 Suppl: 35S–40S. DOI: 10.14219/jada.archive.2008.0353
Mori F, Hiraishi N, Otsuki M, Tagami J. Effect of mastication on flow and properties of saliva. Asian Pac J Dent. 2012; 12: 1–5.
Perween T, Mandal KK, Hasan MA. Dragon fruit: An exotic super future fruit of India. J Pharmacogn Phytochem. 2018; 7(2): 1022–6.
Glick M. Burket’s Oral Medicine. 12th ed. North Carolina: PMPH USA; 2015. p. 212–51
Pohl P, Stecka H, Jamroz P. Fast and interference free determination of calcium and magnesium in honeys by solid phase extraction followed by flame atomic absorption spectrometry. J Braz Chem Soc. 2012; 23(4): 710-7. DOI: 10.1590/S0103-50532012000400017
Bai Y, Ouyang JM, Bai Y, Chen ML. Simultaneous determination of calcium and magnesium in urines by flame atomic absorption spectrometry. Guang Pu Xue Yu Guang Pu Fen Xi. 2004; 24(8): 1016-9.
Ambudkar IS. Regulation of calcium in salivary gland secretion. Crit Rev Oral Biol Med. 2000; 11(1): 4–25. DOI: 10.1177/10454411000110010301
Homann V, Kinne-Saffran E, Arnold WH, Gaengler P, Kinne RKH. Calcium transport in human salivary glands: A proposed model of calcium secretion into saliva. Histochem Cell Biol. 2006; 125(5): 583-91. DOI: 10.1007/s00418-005-0100-2
Del Valle HB, Yaktine AL, Taylor CL, Ross AC, eds. Dietary Reference Intakes for Calcium and Vitamin D. Washington (DC): National Academies Press; 2011. p. 38–41.
Bronner F. Mechanisms of intestinal calcium absorption. J Cell Biochem. 2003; 88(2): 387–93. DOI: 10.1002/jcb.10330
Wongdee K, Charoenphandhu N. Vitamin D-enhanced duodenal calcium transport. Vitam Horm. 2015; 98: 407-40. DOI: 10.1016/bs.vh.2014.12.010
Abou Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, et al. Demineralization-remineralization dynamics in teeth and bone. Int J Nanomedicine. 2016; 11: 4743-63. DOI: 10.2147/IJN.S107624
DOI: https://doi.org/10.24198/pjd.vol32no3.27087
Refbacks
- There are currently no refbacks.
Visitor Stat
Padjadjaran Journal of Dentistry is licensed under Creative Commons Attribution 4.0 International License