Effect of 3-methacryloxypropyltrimethoxysilane on diametral tensile strength of rice husk silica-based dental composite

Renny Febrida, Madeiva Wulanhapsari, Yanwar Faza, Elin Karlina, Arief Cahyanto, Solihudin Solihudin, Diana Rakhmawati Eddy

Abstract


ABSTRACT

Introduction: Rice husk silica has been studied as a filler in dental composite, however, the mechanical properties of the resulting composites are below the commercial due to the poor surface modification between silica and resin matrix. 3-methacryloxyprpyltrimethoxysilane (MPTS) is one of the coupling agents that are effective to modify the silica surface. The purpose of this study to analyze the effect of MPTS on the diametral tensile strength (DTS) of the self-made composite using rice husk silica.  Methods: The research type of this study was an experimental research laboratory. The samples (26 samples) were divided into two groups, namely the test group (using MPTS-modified silica) and the control group (using non-modified silica). The samples were cylindrical in shape with a diameter of 6.0 ± 0.1 mm and a height of 3.0 ± 0.1 mm according to ANSI/ADAS No. 27, 1993 and ISO 4049, 1988. The Fourier Transform Infrared (FTIR), HORIBA, was used to characterize the MPTS grafting on the silica surface. The DTS value is measured by Universal Testing Machine (UTM), Lloyd LRX Plus. Results: FTIR presents the additional peak of carboxyl and methacryloyl group at 1716, 1555, and 1410 cm-1 wavenumber, respectively in MPTS-modified silica. The DTS value of the test group was 43.40 ± 4.43 MPa and the control group was 25.80 ± 2.63 MPa. The test group was significantly higher than the control group (p-value = 0.001). Conclusion: The MPTS is effective to enhance the DTS value of rice husk silica-based composite.

Keywords: Rice husk silica; dental composite; diametral tensile strength; 3-methacryloxypropyltrimethoxysilane.


Keywords


Rice husk silica; dental composite; diametral tensile strength; 3-methacryloxypropyltrimethoxysilane.

Full Text:

PDF

References


REFRERENCES

Wang R, Habib E, Zhu XX. Application of close-packed structures in dental resin composites. Dent Mater. 2017; 33(3); 288–93. DOI: 10.1016/j.dental.2016.12.006

Beck F, Lettner S, Graf A, Bitriol B, Dumitrescu N, Bauer P, et al. Survival of direct resin restorations in posterior teeth within a 19-year period (1996-2015): A meta-analysis of prospective studies. Dent Mater. 2015; 31(8); 958–85. DOI: 10.1016/j.dental.2015.05.004

Djustiana N, Febrida R, Panatarani C, Imarundha Y, Karlina E, Joni IM. Microstructure Analysis of Zirconia-Alumina-Silica Particles Made from Indonesia Natural Sand Synthesized Using Spray Pyrolysis Method. Key Eng Mater. 2017; 720; 285–9. DOI: 10.4028/www.scientific.net/KEM.720.285

Djustiana N, Greviana N, Faza Y, Sunarso. Synthesis and characterization of dental composites. AIP Conference Proceedings. 2018; 1927(1); 1-4. DOI: 10.1063/1.5021191

Rameshbabu AP, Mohanty S, Bankoti K, Ghosh P, Dhara S. Effect of alumina, silk and ceria short fibers in reinforcement of Bis-GMA/TEGDMA dental resin. Compos Part B Eng. 2015; 70; 238–46. DOI: 10.1016/j.compositesb.2014.11.019

Liu J, Zhang H, Sun H, Liu Y, Liu W, Su B, et al. The Development of Filler Morphology in Dental Resin Composites: A Review. Mater (Basel, Switzerland). 2021; 14(19); 1-21. DOI: 10.3390/ma14195612

Bindu MG, Satapathy BK, Jaggi HS, Ray AR. Size-scale effects of silica on bis-GMA/TEGDMA based nanohybrid dental restorative composites. Compos Part B Eng. 2013; 53; 92–102. DOI: 10.1016/j.compositesb.2013.04.046

Febrida R, Sahilah W, Adriana S, Djustiana N, Karlina E, Faza Y, et al. Diametral Tensile Strength and Reflectance Evaluation of Dental Composite Prototype Using Modified Dental Composite Procedures. Key Eng Mater. 2020; 829; 100–7. DOI: 10.4028/www.scientific.net/KEM.829.100

Aminoroaya A, Neisiany RE, Khorasani SN, Panahi P, Das O, Madry H, et al. A review of dental composites: Challenges, chemistry aspects, filler influences, and future insights. Compos Part B Eng. 2021; 216; 108852. DOI: 10.1016/j.composites.2021.108852

Rodríguez HA, Kriven WM, Casanova H. Development of mechanical properties in dental resin composite: Effect of filler size and filler aggregation state. Mater Sci Eng C. 2019; 101; 274–82. DOI: 10.1016/j.msec.2019.03.090

Wang R, Habib E, Zhu XX. Synthesis of wrinkled mesoporous silica and its reinforcing effect for dental resin composites. Dent Mater. 2017; 33(10); 1139–48. DOI: 10.1016/j.dental.2017.07.012

Elfakhri F, Alkahtani R, Li C, Khaliq J. Influence of filler characteristics on the performance of dental composites: A comprehensive review. Ceram Int. 2022; 48(19); 27280-94. DOI: 10.1016/j.ceramint.2022.06.314

Zulkifli NSC, Ab Rahman I, Mohamad D, Husein A. A green sol–gel route for the synthesis of structurally controlled silica particles from rice husk for dental composite filler. Ceram Int. 2013; 39(4); 4559–67. DOI: 10.1016/j.ceramint.2012.11.052

Suryana R, Iriani Y, Nurosyid F, Fasquelle D. Characteristics of silica rice husk ash from Mojogedang Karanganyar Indonesia. IOP Conf Ser Mater Sci Eng. 2018; 367; 1-5. DOI: 10.1088/1757-899X/367/1/012008

AL-Rawas M, Johari Y, Mohamad D, Khamis MF, Ahmad WMAW, Ariffin Z, et al. Water sorption, solubility, degree of conversion, and surface hardness and topography of flowable composite utilizing nano silica from rice husk. J Mater Res Technol. 2021; 15; 4173–84. DOI: 10.1016/j.jmrt.2021.10.024

Pratap B, Gupta RK, Bhardwaj B, Nag M. Resin based restorative dental materials: characteristics and future perspectives. Jpn Dent Sci Rev. 2019; 55(1); 126–38. DOI: 10.1016/j.jdsr.2019.09.004

Kleczewska J, Bielinski D, Nowak J, Sokolowski J, Łukomska-Szymańska M. Dental Composites Based on Dimethacrylate Resins Reinforced by Nanoparticulate Silica. Polym Polym Compos. 2016; 24(6); 411–8. DOI: 10.1177/096739111602400604

Yusoff NM, Johari Y, Ab Rahman I, Mohamad D, Khamis MF, Ariffin Z, et al. Physical and mechanical properties of flowable composite incorporated with nanohybrid silica synthesised from rice husk. J Mater Res Technol. 2019; 8(3); 2777–85. DOI: 10.1016/j.jmrt.2019.04.014

Amdjadi P, Ghasemi A, Najafi F, Nojehdehian H. Pivotal role of filler / matrix interface in dental composites: Review. Biomed Res. 2017; 28(3); 1054–65.

Wang R, Zhang M, Liu F, Bao S, Wu T, Jiang X, et al. Investigation on the physical-mechanical properties of dental resin composites reinforced with novel bimodal silica nanostructures. Mater Sci Eng C Mater Biol Appl. 2015; 50; 266–73. DOI: 10.1016/j.msec.2015.01.090

Tham DQ, Chung I, Kim T, Kang J, Tan MM, Kim Dung NT, et al. Preparation, stabilization and characterization of 3-(methacryloyloxy) propyl trimethoxy silane modified colloidal nanosilica particles. Colloids Surfaces A Physicochem Eng Asp. 2020; 585; 124066. DOI: 10.1016/j.colsurfa.2019.124066

Lyapina M, Cekova M, Krasteva A, Dencheva M, Yaneva-Deliverska M, Kisselova A. Physical Properties of Nanocomposites in Relation to Their Advantages. J IMAB - Annu Proceeding (Scientific Paper). 2016; 22(1); 1056–62. DOI: 10.5272/jimab.2016221.1056

Anusavice KJ, Shen C, Rawls R. Phillips: science of dental materials. Vol. 02, Phillip’s Science of Dental Materials, 12th Edition. 2012. 286 p

Hartoyo HM, Takarini V, Febrida R, Karlina E, Joni IM. Diametral Tensile Strength and Hardness Evaluation of Prototype Composite Based on Natural Zircon Sand Using Geopolymerization Method with Coupling Agent Variation. Key Engineering Mater. 2019; 829; 87-92. DOI: 10.4028/www.scientific.net/KEM.829.87




DOI: https://doi.org/10.24198/pjd.vol34no2.41242

Refbacks

  • There are currently no refbacks.


Visitor Stat

Creative Commons License
Padjadjaran Journal of Dentistry is licensed under Creative Commons Attribution 4.0 International License