Performance analysis of DMF teeth detection using deep learning: A comparative study with clinical examination as quasi experimental study
Abstract
ABSTRACT
Introduction: Decayed, missing, and filled teeth (DMF-T) are indicators used to assess the oral health status of an individual or a population. This examination is typically performed manually by dentists or dental therapists. In previous research, researchers have developed a deep learning model as a part of artificial intelligence that can detect DMF-T. Aim of this research was to analyze the comparison of the performance of deep learning with clinical examinations in DMF-T assessment. Methods: Experienced dentists conducted clinical examinations on 50 subjects who met the inclusion criteria. Oral clinical photos of the same patients were taken from various aspects, in total 250 images, and further analyzed using a deep learning model. The results of the clinical examination and deep learning were then statistically analyzed using an unpaired t-test to determine whether there were differences between groups. Results: The unpaired t-test analysis indicated that there was no significant difference between the result of DMF-T examination by dentist and by DL (P>0.05). Unpaired t-test of this research indicated no significant difference (P = 0.161). The unpaired t-test concluded that t Stat < t Critical two-tail, then who was accepted, which stated that there was no significant difference between the results of the DMF-T examination between two groups. Conclusion: The DL model demonstrates good clinical performance in detecting DMF-T.
Keywords
DMF-T, clinical assessment, deep learning, caries detection
Keywords
Full Text:
PDFReferences
REFERENCES
Ravoori S, Yaddanapalli SC, Shaik PS, Talluri D, Pachava S, Pavani NP. Oral hygiene practices and caries experience among school leaving children in rural area. J of Indian Ass of Pub Health Dent. 2022;20(4):379-383.DOI: 10.4103/jiaphd.jiaphd_53_21
Kemenkes RI. Riset Kesehatan Dasar. Badan Penelitian dan Pengembangan Kesehatan; 2018.
Sulung N, Akdes Y, Nurhayati. Kajian survey epidemiologi indeks DMF-T (faktor penyebab dan upaya pencegahan) indeks DMF-T. J Human Care. 2021;3(6):660-669.DOI: 10.32883/hcj.v6i3.1388
Tim Riskesdas. Laporan nasional hasil kesehatan dasar (RISKESDAS) 2018. Badan Penelitian dan Pengembangan Kesehatan; 2019. p.1.
Adilah BH, Rahardjo A, Bahar A. Penggunaan smartphone photography pada mobile teledentistry untuk pemeriksaan karies pada survey epidemiologi: systematic review. Padj J of Dent Researchers and Students. 2023;7(2):183-192.DOI 10.24198/pjdrs.v7i2.47453
Rahimi HM, Motamedian SR, Rohban MH, Krois J, Uribe SE, Mahmoudinia E, Rokhshad R, Nadimi M, Schwendicke F. Deep learning for caries detection: A systematic review. J of Dent. 2022;122:1-16.DOI: 10.1016/j.jdent.2022.104115
Fitriani R, Imtiyaz N, Assidiq FM. Penerapan teknologi Artificial Intelligence (AI) guna mendukung operasional pelabuhan. Riset Sains dan Teknologi kelautan. 2023;2(6):162-167.DOI: 10.62012/sensistek.v6i2.31712
Rahmani AM, Azhir E, Ali S, Mohammadi M, Ahmed OH, Ghafour MY, et al. Artificial intelligence approaches and mechanism for big data analytics: a systemic study. Peer J Comput Sci. 2021;7:e488. 1-18. DOI: 10.7717/peerj-cs.488.
Sarker IH. Deep learning: a comprehensive overview on techniques, taxonomy, applications and research directions. SN Computer Science. 2021;2(6): p 420.
Huang C, Wang J, Wang S, Zhang Y. A review of deep learning in dentistry. Neurocomputing. 2023.DOI: 10.1016/j.neucom.2023.126629
Rachman FP, Santoso H. Perbandingan Model Deep Learning untuk Klasifikasi Sentiment Analysis dengan Teknik Natural Languange Processing. J Teknologi dan Manajemen Informatika. 2021;7(2):103-112.DOI: 10.26905/jtmi.v7i2.6506
Cameiro JA, Zancan BG, Tirapelli C, Macedo AA. Deep learning to detect and clasiify teeth, dental caries, and restorastions: a systematic mapping. Research Square. 2023;1-36. DOI: 10.21203/rs.3.rs-3150325/v1
You W, Hao A, Li S, Wang Y, Xia B. Deep learning-based dental plaque detection on primary teeth: a comparison with clinical assessments. BMC Oral Health. 2020;20:1-7.DOI: 10.1186/s12903-020-01114-6
Lian L, Zhu T, Zhu F, Zhu H. Deep learning for caries detection and classification. Diagnostics. 2021;11(9):1672.DOI: 10.3390/diagnostics11091672
Fitria M, Oktiana M, Rahayu H, Saddami K, Habibie H, Elma Y, Janura S, Novita R, Putri R, Sari MI. Development of intraoral clinical image dataset for deep learning caries detection. In 2023 2nd International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE) 2023. IEEE:194-198.DOI:10.3390/app12115504
Deshpande H, Singh A, Herunde H. Comparative analysis on YOLO object detection with OpenCV. Int j of research in industrial engineering. 2020;9(1):46-64.DOI: 10.22105/riej.2020.226863.1130
Stark T, Ştefan V, Wurm M, Spanier R, Taubenböck H, Knight TM. YOLO object detection models can locate and classify broad groups of flower-visiting arthropods in images. Scientific Reports. 2023;13(1).DOI: 10.1038/s41598-023-43482-3
Ryzanur MF, Adhani R. Hubungan antara pengetahuan kesehatan gigi dengan nilai indeks DMF-T siswa sekolah menengah pertama. J Ked Gig. 2022;1(6):1-5.DOI: 10.20527/dentin.v6i1.6226
Güneç HG, Ürkmez EŞ, Danaci A, Dilmaç E, Onay HH, Aydin KC. Comparison of artificial intelligence vs. junior dentists’ diagnostic performance based on caries and periapical infection detection on panoramic images. Quantitative Imaging in Medicine and Surgery. 2023;13(11).DOI: 10.21037/qims-23-762
Casalegno F, Newton T, Daher R, Abdelaziz M, Lodi-Rizzini A, Schürmann F, Krejci I, Markram H. Caries detection with near-infrared transillumination using deep learning. J of dent research. 2019;98(11):1227-33. DOI: 10.1177/0022034519871884
Schwendicke F, Elhennawy K, Paris S, Friebertshäuser P, Krois J. Deep learning for caries lesion detection in near-infrared light transillumination images: A pilot study. J of dent. 2020;92.DOI: 10.1016/j.jdent.2019.103260
Supriatna A, Angki J. Pengaruh kebersihan gigi dan mulut terhadap terjadinya DMF-T pada murid kelas IV dan V Sdn Rappocini tahun 2017. Media Kesehatan Gigi: Politeknik Kesehatan Makassar. 2018;17(1);39-48.DOI: 10.32382/mkg.v17i1.190
Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, Ng AY. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature medicine. 2019;25(1):65-69.DOI: 10.1038/s41591-018-0268-3
Lee H, Park M, Kim J. Cephalometric landmark detection in dental x-ray images using convolutional neural networks. InMedical imaging 2017: Computer-aided diagnosis. 2017;10134:494-499.DOI:10.1117/12.2255870
Schwendicke F, Singh T, Lee JH, Gaudin R, Chaurasia A, Wiegand T, Uribe S, Krois J. Artificial intelligence in dental research: Checklist for authors, reviewers, readers. J of dentistry. 2021;107. DOI: 10.1016/j.jdent.2021.103610
DOI: https://doi.org/10.24198/pjd.vol36no1.52357
Refbacks
- There are currently no refbacks.
Visitor Stat
Padjadjaran Journal of Dentistry is licensed under Creative Commons Attribution 4.0 International License