Antibacterial and cytotoxic effects of fresh bovine amniotic membrane with hydroxyapatite (BAM-HA): a laboratory experiment

Octarina Octarina, Stefhanie Berliana, Ruth Belatriks Kalangit

Abstract


Introduction: Bacterial infections, particularly by Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) and Porphyromonas gingivalis (P. gingivalis), can worsen alveolar bone resorption after tooth extraction. The capability of Bovine Amniotic Membrane-Hydroxyapatite (BAM-HA) biocomposite to reduce this resorption has been explored. However, before clinical use, cytotoxicity testing is imperative to ensure its biocompatibility. The aim of the study was to assess both the antibacterial effects and cytotoxicity of the BAM-HA biocomposite to ensure its suitability for clinical use biocompatibility of the BAM-HA biocomposite before its clinical application. Methods: The laboratory-based research involved testing BAM combined with HA powder in 4:1 and 4:2 ratios via freeze-drying and underwent antibacterial tests against A. actinomycetemcomitans and P. gingivalis, using the plate count method. Cytotoxicity tests were performed on HGF cells, including negative control, positive control, BAM-HA (4:1), and BAM-HA (4:2) groups, with statistical analysis conducted using One-Way ANOVA and Post Hoc Bonferroni and Tukey tests. Results: Antibacterial tests against A. actinomycetemcomitans revealed significant reduction in colony count with BAM-HA ratios 4:1 (129.0 ± 12.7 CFU/mL) and 4:2 (77.3 ± 15.5 CFU/mL) compared to the negative control (186.6 ± 27.5 CFU/mL). Similar reductions were observed for P. gingivalis, with BAM-HA ratios 4:1 (51.3 ± 6.6 CFU/mL) and 4:2 (3.1 ± 1.5 CFU/mL) compared to the negative control (117.3 ± 22.0 CFU/mL). Cytotoxicity tests showed no significant differences in HGF cell viability and IC50 values between the negative control and BAM-HA (4:1) or BAM-HA (4:2) groups. Conclusion: The BAM - HA biocomposite shows antibacterial effects against A. actinomycetemcomitans and P. gingivalis. Moreover, BAM - HA ratios of 4:1 and 4:2 do not induce cytotoxic effects on human gingival fibroblasts, suggesting potential biocompatibility for clinical applications.

Keyword

A. actinomycetemcomitans, antibacterial effects, BAM-HA biocomposite, cytotoxicity, P. gingivalis


Keywords


A. actinomycetemcomitans, antibacterial effects, BAM-HA biocomposite, cytotoxicity, P. gingivalis

Full Text:

PDF

References


Lin HK, Pan YH, Salamanca E, Lin Y Te, Chang WJ. Prevention of Bone Resorption by HA / β -TCP + Collagen Composite after Tooth Extraction : A Case Series. Int. J. Environ. Res. Public Health 2019;16:1–11. DOI:10.3390/ijerph16234616

Kim YK, Ku JK. Extraction socket preservation. J Korean Assoc Oral Maxillofac Surg 2020;46(6):435–9. DOI: 10.5125/jkaoms.2020.46.6.435

Fee L. Socket Preservation. Br Dent J 2017;222(8):579–82. DOI: 10.1038/sj.bdj.2017.355.

Pamungkas S, Nardiatmo S, Mapangara S, Jais AI. Socket Preservation After Tooth Extraction: a Systematic Review. Makassar Dental Journal 2019;8(2):91–6. DOI: 10.35856/mdj.v8i2.277

Oh D, Son D, Kim J, Kwon SY. Freeze-Dried Bovine Amniotic Membrane as a Cell Delivery Scaffold in a Porcine Model of Radiation-Induced Chronic Wounds. Arch Plast Surg 2021;48(4):448–56. DOI: 10.5999/aps.2020.00997

Faadhila T, Valentina M, Munadziroh E, Nirwana I, Soekartono H, Surboyo M. Bovine sponge amnion stimulates socket healing: A histological analysis. J Adv Pharm Technol Res 2021;12(1):99–103. DOI: 10.4103/japtr.JAPTR_128_20

Wibowo AR, Octarina O, Munadziroh E, Handharyani E. the Effect of Application Bovine Amniotic Membrane on Osteoblasts, Osteocytes, and Collagen. Padj J Dent 2023;35(2):163.DOI: 10.24198/pjd.vol35no2.46522

Min S, Ji YY, Park SY, Kwon HH, Suh DH. Clinical effect of bovine amniotic membrane and hydrocolloid on wound by laser treatment: prospective comparative randomized clinical trial. Wound Heal Soc 2014;22(2):212–9. DOI:10.1111/wrr.12145

Ariesta G, Octarina O, Munadziroh E, Handharyani E. Pengaruh Aplikasi Bovine Amniotic Membrane pada Soket Tulang Alveolar terhadap Ekspresi BMP-2: Studi Eksperimental In Vitro. J Ked Gig Univ Padj 2023;35(2):141. DOI: 10.24198/jkg.v35i2.46718

Octarina, Munadziroh E, Razak FA, Surboyo MDC. Characterisation of Bovine Amniotic Membrane with Hydroxyapatite Bio-Composite. Coatings 2022;12(10). DOI: 10.3390/coatings12101403

11.Agustantina TH, Munadziroh E, Yuliati A, Bahtiar MRH, Octarina, Salma RF, et al. The Characteristics of Swelling and Biodegradation Tests of Bovine Amniotic Membrane-Hydroxyapatite Biocomposite. Dent J 2023;56(3):172–7. DOI: 10.20473/j.djmkg.v56.i3.p172-177.

Hiratsuka T, Uezono M, Takakuda K, Kikuchi M, Oshima S, Sato T, Suzuki S, Moriyama K. Enhanced Bone Formation onto the Bone Surface Using a Hydroxyapatite/Collagen Bone-Like Nanocomposite. J Biomed Mater Res B Appl Biomater 2020 Feb;108(2):391-398. DOI: 10.1002/jbm.b.34397.

Bal Z, Kaito T, Korkusuz F, Yoshikawa H. Bone regeneration with hydroxyapatite-based biomaterials. Emergent Materials 2020;3(4):521– 544. DOI: 10.1007/s42247-019-00063-3

Balhuc S, Campian R, Labunet A, Negucioiu M, Buduru S, Kui A. Dental Applications of Systems Based on Hydroxyapatite Nanoparticles—An Evidence-Based Update. Crystals 2021;11(6):1–19. DOI: 10.3390/cryst11060674

Jain G, Blaauw D, Chang S. A Comparative Study of Two Bone Graft Substitutes–InterOss® Collagen and OCS-B Collagen®. J Funct Biomater 2022;28(1):1–13. DOI: 10.3390/jfb13010028

Böttger S, Gran SZ, Streckbein P, Knitschke M, Hain T, Weigel M, et al. A New Type of Chronic Wound Infection After Wisdom Tooth Extraction: A Diagnostic Approach with 16s-Rrna Gene Analysis, Next-Generation Sequencing, And Bioinformatics. Pathogens 2020;9(10):1–12.DOI: 10.3390/pathogens9100798

Usui M, Onizuka S, Sato T, Kokabu S, Ariyoshi W, Nakashima K. Mechanism of Alveolar Bone Destruction in Periodontitis—Periodontal Bacteria and Inflammation. Jpn Dent Sci Rev 2021;57(1):201–8. DOI: 10.1016/j.jdsr.2021.09.005

Landén NX, Li D, Ståhle M. Transition from Inflammation to Proliferation: A Critical Step During Wound Healing. Cell Mol Life Sci 2016;73(20):3861–85. DOI: 10.1007/s00018-016-2268-0

Raja M, Ummer F, Dhivakar CP. Aggregatibacter Actinomycetemcomitans - A Tooth Killer. J Clin Diagnostic Res 2014;8(8):13–6. DOI: 10.7860/JCDR/2014/9845.4766

How KY, Song KP, Chan KG. Porphyromonas gingivalis: An overview of periodontopathic pathogen below the gum line. Front Microbiol 2016;7(1):1–14. DOI: 10.3389%2Ffmicb.2016.00053

Herbert BA, Novince CM, Kirkwood KL. Aggregatibacter actinomycetemcomitans, a potent immunoregulator of the periodontal host defense system and alveolar bone homeostasis. Mol Oral Microbiol 2016;31(3):207–27. DOI: 10.1111/omi.12119

Tsuchida S, Nakayama T. Recent Clinical Treatment and Basic Research on the Alveolar Bone. Biomedicines 2023;11(3). DOI: 10.3390/biomedicines11030843

LM Sykes, C Bradfield, K Naidu. Alveolar bone resorption following tooth extraction characteristically illustrated. South African Dent J 2021;76(9):545–9. DOI: 10.17159/2519-0105/2021/v76no9a5

Muharammy F, Machmud R, Nelis S. Perbedaan daya hambat obat anestesi lokal lidocaine 2% dan articaine 4% terhadap pertumbuhan bakteri Porphyromonas gingivalis secara in vitro. Andalas Dent J. 2016;4(2):89–97. DOI : 10.25077/adj.v4i2.159

Undap NI, Sumilat DA, Bara R. Antibacterial substances of sponges, Agelas tubulata and Phyllospongia sp., from Manado Bay, against the growth of several bacterial strains. Aquat Sci Manag. 2019;5(1):23. DOI: 10.35800/jasm.5.1.2017.24253

Neto AS, Pereira P, Fonseca AC, Dias C, Almeida MC, Barros I, et al. Highly porous composite scaffolds endowed with antibacterial activity for multifunctional grafts in bone repair. Polymers (Basel). 2021;13(24). DOI: 10.3390/polym13244378

Alfonso García SL, Mira Uribe LM, Castaño López S, Parada-Sanchez MT, Arboleda-Toro D. Ultrastructural characterization of human gingival fibroblasts in 3D culture. Cells. 2022;11(22):3647. DOI:10.3390/cells11223647

Diar-Bakirly S, El-Bialy T. Human gingival fibroblasts: Isolation, characterization, and evaluation of CD146 expression. Saudi Journal of Biological Sciences. 2021;28(4):2518–26. DOI:10.1016/j.sjbs.2021.01.053

Chuang Y, Liou C, Chen S, Wang P, Chuang J, Tiao M, et al. Mitochondrial transfer from Wharton’s jelly mesenchymal stem cell to MERRF cybrid reduces oxidative stress and improves mitochondrial bioenergetics. Oxidative Medicine and Cellular Longevity. 2017;2017:1–22. DOI:10.1155/2017/5691215

Jo HY, Kim Y, Park HW, Moon HE, Bae S, Kim J, et al. The unreliability of MTT assay in the cytotoxic test of primary cultured glioblastoma cells. Experimental Neurobiology. 2015;24(3):235–45.DOI :10.5607/en.2015.24.3.235

Cho YS, Kim HK, Ghim MS, Hong MW, Kim YY, Cho YS. Evaluation of the antibacterial activity and cell response for 3D-printed polycaprolactone/ nanohydroxyapatite scaffold with zinc oxide coating. MDPI. 2020;12(10):1-15. DOI:10.3390/POLYM12102193

Cunniffe GM, Dickson GR, Partap S, Stanton KT, O’Brien FJ. Development and characterisation of a collagen nano-hydroxyapatite composite scaffold for bone tissue engineering. J Mater Sci Mater Med. 2010;21(8):2293-2298. DOI:10.1007/s10856-009-3964-1

Andriani I, Meiyanto E, Ana ID. Antibakteri Human Beta-Defensin-3 Dalam Terapi Periodontitis. J Kedokt Gigi Univ Baiturrahmah. 2019;7(2):123–35. DOI: 10.33854/jbd.v7i2.478

Bedran TBL, Mayer MPA, Spolidorio DP, Grenier D. Synergistic Anti-Inflammatory Activity Of The Antimicrobial Peptides Human Beta-Defensin-3 (Hbd-3) And Cathelicidin (LL-37) In A Three-Dimensional Co-Culture Model Of Gingival Epithelial Cells And Fibroblasts. PLOS 2014;9(9):1–10. DOI: 10.1371/journal.pone.0106766.

Neto AS, Pereira P, Fonseca AC, Dias C, Almeida MC, Barros I, et al. Highly porous composite scaffolds endowed with antibacterial activity for multifunctional grafts in Bone Repair. Polymers. 2021;13(24):4378. DOI:10.3390/polym13244378

Suwandecha T, Srichana T, Balekar N, Nakpheng T, Pangsomboon K. Novel Antimicrobial Peptide Specifically Active Against Porphyromonas Gingivalis. Arch Microbiol 2015;197(7):899–909.DOI: 10.1007/s00203-015-1126-z

Octarina, Munadziroh E, Razak FA, Surboyo MD. Characterisation of bovine amniotic membrane with hydroxyapatite bio-composite. Coatings. 2022;12(10):1403. DOI: 10.3390/coatings12101403

Kolmas J, Groszyk E, Rózycka DK. Substituted Hydroxyapatites with Antibacterial Properties. Hindawi 2014(1):15. DOI: 10.1155/2014/178123




DOI: https://doi.org/10.24198/pjd.vol36no1.53128

Refbacks

  • There are currently no refbacks.


Visitor Stat

Creative Commons License
Padjadjaran Journal of Dentistry is licensed under Creative Commons Attribution 4.0 International License