Particle size analysis of yellowfin tuna (Thunnus albacares) skin collagen powder using papain-soluble collagen method with varying NaCl concentrations: an experimental laboratory

Destya Arizha Fatryana, Fitria Rahmitasari, Chaterina Diyah Nanik K., Moh. Basroni Rizal, Saka Winias

Abstract


ABSTRACT

Introduction: The skin of yellowfin tuna (Thunnus albacares) contains high protein, which could potentially be a halal collagen product. Collagen extraction using the papain-soluble collagen method has the advantage of producing a higher collagen yield compared to the acid method. Particle size, one of the physical properties of collagen, plays a crucial role in its efficacy in dentistry. This study aims to analyze the particle size of collagen powder synthesized   from Thunnus albacares skin using the papain-soluble collagen method, with varying concentrations of NaCl. Methods: Type of research is an experimental laboratory. Thunnus albacares skin was synthesized by chopping, cleaning, and soaking in a 0.1 M NaOH solution. The extraction process used the enzyme papain and 0.5 M of acetic acid. Samples were divided into four groups, each with different concentrations of NaCL: 0, no NaCL;, 0.9 M NaCl, 1.3 M NaCl, and 1.7 M NaCl. After centrifugation, the samples were freeze-dried. The particle size of collagen powder was measured using a Particle Size Analyzer test tool. The data collected was then analyzed using the Mann-Whitney test. Results: Particle size distributions are as follows: K group (3.36 nm), P1 (1.842 nm), P2 (3.36 nm), and P3 (10.12 nm). There is a significant difference in groups K-P1 and P3, P1-P2 and P3, and P2-P3 (p<0.05). However, there is no significant difference in groups K-P2 (p>0.05). Conclusion: Particle size of this research produced nano-sized collagen powder, with the lowest particle size observed in the 0.9 M NaCl group, measuring at 1.842 nm. The particle size increased in the group without NaCl and in the 1.3 M NaCl group at 3.36 nm, and reached the highest value in the 1.7 M NaCl group at 10.12 nm. 


Keywords


Tuna, Collagen, Particle size

Full Text:

PDF

References


Fawzya YN, Chasanah E, Poernomo A, et al. Isolasi dan Karakterisasi Parsial Kolagen dari Teripang Gamma (Stichopus variegatus). JPB Kelautan dan Perikanan. 2016;11(1):91-100. https://doi.org/10.15578/jpbkp.v11i1.284

International Trade Center. List of products imported by Indonesia detailed products in the following category: 35 Albuminoidal substances; modified starches; glues; enzymes, 2011-2015.

Kakarla P, Sai J, Avula S, Anche S, MJSP. Collagen as A Biomaterial In Dentistry. Int J Innov Med Health Sci. 2016;6:1-4. https://doi.org/10.20530/IJIMHS_6_1-4

Rahmitasari R. Scaffold 3D kitosan dan kolagen sebagai graft pada kasus kerusakan tulang (Study Pustaka). Material Kedokteran Gigi. 2016;5(2):1- 7. https://doi.org/10.32793/jmkg.v5i2.246

Matinong AME, Chisti Y, Pickering KL, Haverkamp RG. Collagen Extraction from Animal Skin. Biology (Basel). 2022;11(6):1-15. https://doi.org/10.3390/biology11060905

Hadfi NH, Sarbon NM. Physicochemical properties of silver catfish (Pangasius sp.) skin collagen as influenced by acetic acid concentration. Food Res. 2019;3(6):783-790. https://doi.org/10.26656/fr.2017.3(6).130

Cahyono H, Trilaksani W, Uju. Karakteristik Fisikokimia Papain Soluble Collagen dari Gelembung Renang Ikan Tuna (Thunnus sp.). J Pengolah Has Perikan Indones. 2022;25(1):1-17. https://doi.org/10.17844/jphpi.v25i1.38213

Rahman VR, Bratadiredja MA, Saptarini NM. Artikel Review: Potensi Kolagen sebagai Bahan Aktif Sediaan Farmasi. Majalah Farmasetika. 2021;6(3):253-286. https://doi.org/10.24198/mfarmasetika.v6i3.33621

Binlateh T, Thammanichanon P, Rittipakorn P, Thinsathid N, Jitprasertwong P. Collagen-Based Biomaterials in Periodontal Regeneration: Current Applications and Future Perspectives of Plant-Based Collagen. Biomimetics. 2022;7(2):1-16. https://doi.org/10.3390/biomimetics7020034

Rahmitasari F, Rahayu RP, Munadziroh E. The Chitosan-chicken Shank Collagen Used as Scaffold Through Lymphocyte Cell Proliferation in Bone Regeneration Process. Acta Med Philipp. 2022;56(8):43-48. https://doi.org/10.47895/amp.vi0.1828

Rahmitasari F, Rahayu RP, Munadziroh E. The potential of chitosan combined with chicken shank collagen as scaffold on bone defect regeneration process in Rattus norvegicus. Dent J (Majalah Kedokteran Gigi). 2016;49(1):22. https://doi.org/10.20473/j.djmkg.v49.i1.p22-26

Jafari H, Lista A, Siekapen MM, et al. Fish collagen: Extraction, characterization, and applications for biomaterials engineering. Polymers (Basel). 2020;12(10):1-37. https://doi.org/10.3390/polym12102230

KKP. Komitmen KKP Kelola Perikanan Tuna Berkelanjutan dan Terukur. Published 2021. Accessed April 24, 2024. https://www.kkp.go.id/news/news-detail/komitmen-kkp-kelola-perikanan-tuna-berkelanjutan-dan-terukur65c1bbdb2df23.html

Agustina M, Setyadji B, Tampubolon PARP. Perikanan Tuna Sirip Kuning (Thunnus albacares Bonnaterre, 1788) Pada Armada Tonda Di Samudera Hindia Selatan Jawa. J Bawal. 2019;11(3):161-173. https://doi.org/10.15578/bawal.11.3.2019.161-173

Moranda DP, Handayani L, Nazlia S. Pemanfaatan limbah kulit ikan tuna sirip kuning (Thunnus albacares) sebagai gelatin: Hidrolisis menggunakan pelarut HCl dengan konsentrasi berbeda. Acta Aquatica: Aquatic Sciences J. 2018;5(2):81-87. https://doi.org/10.29103/aa.v5i2.850

Syafrijal, Sumarto, Dewita. Karakteristik Mutu Nanopartikel Kolagen Daging Teripang Pasir (Holothuria scabra) dengan Lama Waktu Pengadukan Berbeda. Berkala Perikanan Terubuk. 2018;46(3):27-36. https://doi.org/10.31258/terubuk.46.3.27-36

Arun A, Malrautu P, Laha A, Luo H, Ramakrishna S. Collagen nanoparticles in drug delivery systems and tissue engineering. Applied Sciences (Switzerland). 2021;11(23):1-17. https://doi.org/10.3390/app112311369

Fathi-Achachelouei M, Knopf-Marques H, Ribeiro da Silva CE, et al. Use of Nanoparticles in Tissue Engineering and Regenerative Medicine. Front Bioeng Biotechnol. 2019;7:1-22. https://doi.org/10.3389/fbioe.2019.00113

Zong C, Bronckaers A, Willems G, He H, de L1ano-Perula MC. Nanomaterials for Periodontal Tissue Regeneration: Progress, Challenges and Future Perspectives. J. Func. Biomater. 2023; 14(6): 1-20. https://doi.org/10.3390/jfb14060290

Cuschieri P. Report: Development Of Collagen Extraction Methods From Fish Waste.; 2020. Accessed April 24, 2024. https://www.culturadelmare.it/bythos/wp-content/uploads/D4.1_BYTHOS_UoM-Report-Tuna-Collagen-Extraction-Methods-Excl.-SDS.pdf

Zeugolis DI, Paul RG, Attenburrow G. Extruded collagen fibres for tissue- engineering applications: Influence of collagen concentration and NaCl amount. J Biomater Sci Polym Ed. 2009;20(2):219-234. https://doi.org/10.1163/156856209X404505

Nikzamir M, Akbarzadeh A, Panahi Y. An overview on nanoparticles used in biomedicine and their cytotoxicity. J Drug Deliv Sci Technol. 2021;61:1-12. https://doi.org/10.1016/j.jddst.2020.102316

Moraes G, Zambom C, Siqueira WL. Nanoparticles in dentistry: A comprehensive review. Pharmaceuticals. 2021;14(8):1-29. https://doi.org/10.3390/ph14080752

Ariyanti A, Dewi M, Prasista Hapsari A, et al. Comparison Collagen Content Of The Shell Of A Clam Blood (Anadara Granosa) Andshell Of Clam Greens (Mytilus Viridis) In Bandengan Kendal, Central Java. Proceedings International Conference on Healthcare. 2018;1(1):1-6. https://doi.org/10.37013/jf.v1i1.55

Nursyam H. Karakteristik Fisika-Kimia dan Mikrostruktur Kolagen dari Kulit Ikan Tuna (Thunnus sp) yang Diekstrak Menggunakan Asam-Asam Alami. Published online 2012. Accessed April 24, 2024. https://fpik.ub.ac.id/wp-content/uploads/2017/02/UGM-2012.pdf

Shalaby M, Ghareeb AZ, Khedr SM, et al. Nanoparticles of bioactive natural collagen for wound healing: Experimental approach. Published online 2023. https://doi.org/10.1371/journal.pone.0282557

Desmelati, Sumarto, Dewita, Dahlia, Syafrijal, Sari PA. Determination of Nano-Collagen Quality from Sea Cucumber Holothuria scabra. In: IOP Conference Series: Earth and Environmental Science. Vol 430. Institute of Physics Publishing; 2020:1- 11. https://doi.org/10.1088/1755-1315/430/1/012005

Wulandari, Supriadi A, Purwanto BPSTHPB. Pengaruh Defatting Dan Suhu Ekstraksi Terhadap Karakteristik Fisik Gelatin Tulang Ikan Gabus (Channa striata). Fishtech. 2013;2(1):38-45. https://doi.org/10.36706/fishtech.v2i1.1101

Lo S, Fauzi MB. Current update of collagen nanomaterials—fabrication, characterisation and its applications: A review. Pharmaceutics. 2021;13(3):1-18. https://doi.org/10.3390/pharmaceutics13030316

Kusa, S. R., Naiu, A. S., & Yusuf, N. Karakteristik Kolagen Kulit Tuna Sirip Kuning (Thunnus albacares) pada Waktu Hidro-Ekstraksi Berbeda dan Potensinya dalam Bentuk Sediaan Nanokolagen. Media Teknologi Hasil Perikanan. 2022;10(2):107–116. DOI: https://doi.org/10.35800/mthp.10.2.2022.41716.

Cao C, Wang H, Zhang J, et al. Effects of Extraction Methods on the Characteristics, Physicochemical Properties and Sensory Quality of Collagen from Spent-Hens Bones. Foods. 2023;12(1):1-18. https://doi.org/10.3390/foods12010202

Nurilmala M, Hizbullah HH, Karnia E, Kusumaningtyas E, Ochiai Y. Characterization and Antioxidant Activity of Collagen, Gelatin, and the Derived Peptides from Yellowfin Tuna (Thunnus albacares) Skin. Mar Drugs. 2020;18(2):1-12. https://doi.org/10.3390/md18020098

Suvaneeth P, dan Nair ND, 2018. Biomaterials and biocompatibility. World J Pharm Res, 7(10), 161–171. https://doi.org/10.20959/wjpr201810-12253




DOI: https://doi.org/10.24198/pjd.vol36no2.54588

Refbacks

  • There are currently no refbacks.


Visitor Stat

Creative Commons License
Padjadjaran Journal of Dentistry is licensed under Creative Commons Attribution 4.0 International License