The impact of chitosan derived from black soldier fly (Hermetia illucens) pupae on bone remodeling post-tooth extraction: an in vivo study

Ni’mal Maula, Marsela Umbar Waty, Renie Kumala Dewi, Sri Oktawati, Asdar Gani, Eko Suhartono, Rajendran Ganesh

Abstract


Introduction: Bone defects or alveolar sockets commonly occur after tooth extraction. Black Soldier Fly (BSF) pupae contain 35% chitin, which can be converted into chitosan. This study aims to analyze the effect of BSF pupae chitosan gel on the number of osteoblasts and osteoclasts in post-extraction sockets. Method: This study employed a true experimental design. The left mandibular incisor of guinea pigs was extracted. In the control group (n=9), the socket was filled with polyethylene glycol (PEG) gel as a placebo, while in the treatment group (n=9), the socket was filled with BSF pupae chitosan  gel. The gel was applied until the socket was full, followed by suturing with non-absorbable silk. Euthanasia was performed on days 7, 14, and 21 to evaluate the number of osteoblasts and osteoclasts. Data were analyzed using one-way Anova. Results: The osteoblast count in the treatment group increased on day 7 (52.20 ± 1.90), day 14 (91.53 ± 1.00), and day 21 (104.13 ± 5.33) compared to the control group:  day 7 (39.80 ± 5.43), day 14 (61.13 ± 1.10), and day 21 (82.60 ± 2,11). The number of osteoclasts decreased in both groups: in the control group on day 7 (9.83 ± 0.35), day 14 (12.80 ± 0.72), and day 21 (2.46 ± 0.11); and in the treatment group on day 7 (4.86 ± 1.51), day 14 (9 ± 0.34), and day 21 (2.66 ± 0.11). Statistical analysis revealed significant differences in osteoblast and osteoclast counts between the treatment and control groups (p = 0.000). Conclusion: The application of chitosan BSF pupae gel can increase osteoblast numbers and decrease osteoclast numbers after tooth extraction, potentially accelerating bone formation and offering benefits for future bone regeneration.


Keywords


Chitosan black soldier fly, osteoblasts, osteoclasts, bone remodeling

Full Text:

PDF

References


Rashid ME, Alam MK, Akhter K, Abdelghani A, Babkair HA, Sghaireen MG. Comparison of Different Suturing Techniques in Post-Extraction Socket Healing. J Pharm Bioallied Sci. 2024 Feb 1;16:S678–80. https://doi.org/10.4103/jpbs.jpbs_937_23

Saravanan K. Assessment of post extraction complications in Indians. Bioinformation. 2021 Dec 31;17(12):1120–5. https://doi.org/10.6026/973206300171120.

Erlyn P, Irfannuddin I, Murti K, Lesbani A. The Potential of Shell Extract as a Hemostasis and Wound Healing Agent: A Literature Review. Jurnal Kedokteran Brawijaya. 2024 Feb 29;31–9. DOI: https://doi.org/10.21776/ub.jkb.2023.033.01.6

Kumala ELC, Mardiyantoro F, Salaras PMSW. Efek Toothgraft Terhadap Jumlah Osteoblas Soket Tikus Pasca Pencabutan. E-Prodenta Journal of Dentistry. 2021;5(2):506–14. DOI: https://doi.org/10.21776/ub.eprodenta.2021.005.02.7

Ningsih JR, Haniastuti T, Handajani J. Re-Epitelisasi Luka Soket Pasca Pencabutan Gigi Setelah Pemberian Gel Getah Pisang Raja (Musa sapientum L) Kajian histologis pada marmut (Cavia cobaya). JIKG (Jurnal Ilmu Kedokteran Gigi). 2019;2(1):1–6. https://doi.org/10.23917/jikg.v2i1.6644

Dumić AK, Pajk F, Olivi G. The effect of post-extraction socket preservation laser treatment on bone density 4 months after extraction: Randomized controlled trial. Clin Implant Dent Relat Res. 2021 Jun 1;23(3):309–16.https://doi.org/10.1111/cid.12991

Lee SK, Jung SH, Song SJ, Lee IG, Choi JY, Zadeh H, Lee DW, Pi SH, You HK. miRNA-Based Early Healing Mechanism of Extraction Sockets: miR-190a-5p, a Potential Enhancer of Bone Healing. Biomed Res Int. 2022;1–14. https://doi.org/10.1155/2022/7194640

Criollo-Mendoza MS, Contreras-Angulo LA, Leyva-López N, Erick P. Gutiérrez-Grijalva, Jiménez-Ortega LA, Heredia JB. Wound Healing Properties of Natural Products: Mechanisms of Action. Molecules. 2023 Jan;28(2):598. https://doi.org/ 10.3390/molecules28020598

Yang S, Li Y, Liu C, Wu Y, Wan Z, Shen D. Pathogenesis and Treatment Of Wound Healing In Patients With Diabetes After Tooth Extraction. Front Endocrinol (Lausanne). 2022 Sep 23;13. https://doi.org/10.3389/fendo.2022.949535

Udeabor SE, Heselich A, Al-Maawi S, Alqahtani AF, Sader R, Ghanaati S. Current Knowledge on the Healing of the Extraction Socket: A Narrative Review. Bioengineering. 2023 Oct 1;10(10). https://doi.org/10.3390/bioengineering10101145

Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast-Osteoclast Communication and Bone Homeostasis. Vol. 9, Cells. NLM (Medline); 2020. https://doi.org/10.3390/cells9092073

Zainal Ariffin SH, Lim KW, Abdul Wahab RM, Ariffin ZZ, Rus Din RD, Shahidan MA, et al. Gene expression profiles for in vitro human stem cell differentiation into osteoblasts and osteoclasts: a systematic review. PeerJ. 2022 Oct 17;10. https://doi.org/10.7717/peerj.14174

Omi M, Mishina Y. Roles of osteoclasts in alveolar bone remodeling. Genesis (United States). 2022 Sep 1;60(8–9). https://doi.org/10.1002/dvg.23490

Tobeiha M, Moghadasian MH, Amin N, Jafarnejad S. RANKL/RANK/OPG Pathway: A Mechanism Involved in Exercise-Induced Bone Remodeling. Biomed Res Int. 2020;2020. https://doi.org/10.1155/2020/6910312

Eddy. (Tinjauan Pustaka) Kalsium Sulfat sebagai Bone Graft. Jurnal Kedokteran Gigi terpadu. 2021 May 31;3(2):4–5. https://doi.org/10.25105/jkgt.v3i2.12612

Battafarano G, Rossi M, De Martino V, Marampon F, Borro L, Secinaro A, et al. Strategies for bone regeneration: From Graft to Tissue Engineering. Int J Mol Sci. 2021 Feb 1;22(3):1–22. https://doi.org/10.3390/ijms22031128

Dewi RK, Oktawati S, Gani A, Suhartono E, Hamrun N, Qomariyah L. Potention Black Soldier Fly’s (Hermetia illucens) Live for Wound Healing and Bone Remodeling: A Systematic Review. Azerbaijan Medical Journal. 2023 Jun;63(6).

Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z, et al. Chitosan derivatives and their application in biomedicine. Int J Mol Sci. 2020 Jan 2;21(2). https://doi.org/10.3390/ijms21020487

Matica MA, Aachmann FL, Tøndervik A, Sletta H, Ostafe V. Chitosan As A https://doi.org/Wound Dressing Starting Material: Antimicrobial Properties and Mode Of Action. Int J Mol Sci. 2019 Dec 1;20(23). https://doi.org/10.3390/ijms20235889

Wang W, Xue C, Mao X. Chitosan: Structural Modification, Biological Activity and Application. Int J Biol Macromol. 2020 Dec 1;164:4532–46. https://doi.org/10.1016/j.ijbiomac.2020.09.042

Sulistyawati L, Foliatini F, Nurdiani N, Puspita F. Isolasi dan Karakterisasi Kitin dan Kitosan dari Pupa Black Soldier Fly (BSF). Warta Akab. 2022;46(1):56–62.

Khan F, Pham DTN, Oloketuyi SF, Manivasagan P, Oh J, Kim YM. Chitosan and Their Derivatives: Antibiofilm Drugs Against Pathogenic Bacteria. Colloids Surf B Biointerfaces. 2020 Jan 1;185. https://doi.org/10.1016/j.colsurfb.2019.110627

Rama Putranto R, S. Abdurrahman MM, Grati CO. Effects Of Clamshell (Amusium Pleuronectes) Chitosan Extract On The Increase Number Of Osteoblast Of The Alveolar Bone Under Periodontitis. MEDALI Journal. 2022 Dec;4(1). https://doi.org/10.30659/medali.4.3.1-5

Dewi RK, Oktawati S, Gani A, Suhartono E, Hamrun N, Rohmanna NA, et al. Synthesis, Characterization, and Insilico Nanochitosan of Pupa Black Soldier Fly (Hermetia Illucens) As Bone Graft Material for Bone Remodeling Post Tooth Extraction. Journal of Chemical Health Risks. 2023;13(4):2370–7.

Primadina N, Basori A, Perdanakusuma DS. Proses Penyembuhan Luka Ditinjau Dari Aspek Mekanisme Seluler Dan Molekuler. Qanun Medika. 2019;3(1):31–43.https://doi.org/10.30651/jqm.v3i1.2198

Manto, T. H., Sukmana, B. I., & Nahzi, M. Y. I. Pengaruh Ekstrak Kulit Batang Mangga Kasturi (Mangifera casturi) Terhadap Kepadatan Hard Callus. Dentin.2021;5(3):144–7.https://doi.org/10.20527/dentin.v5i3.4351

Ashwin Chandra Veni M, Rajathi P. Interaction between Bone Cells in Bone Remodelling. Journal of Academy of Dental Education. 2017;1-15. https://doi.org/10.18311/jade/2015-2016/15952

Sa’diyah JS, Septiana DA, Farih NN, Ningsih JR. Pengaruh gel ekstrak daun binahong (Anredera cordifolia) 5% terhadap peningkatan osteoblas pada proses penyembuhan luka pasca pencabutan gigi tikus strain Wistar. Jurnal Kedokteran Gigi Universitas Padjadjaran. 2020 Apr 30;32(1):9. https://doi.org/10.30651/jqm.v3i1.2198

Vieira AE, Repeke CE, De Barros Ferreira S, Colavite PM, Biguetti CC, Oliveira RC, et al. Intramembranous bone healing process subsequent to tooth extraction in mice: Micro-computed tomography, histomorphometric and molecular characterization. PLoS One. 2015;10(5). https://doi.org/10.1371/journal.pone.0128021

Xiao W, Wang Y, Pacios S, Li S, Graves DT. Cellular and Molecular Aspects of Bone Remodeling. Front Oral Biol. 2016;18:9–16. DOI: https://doi.org/10.30651/jqm.v3i1.2198

Rizqi, C., Harmono, H., & Nugroho, R. Pengaruh Lama Distres Kronis Terhadap Perubahan Jumlah Sel Osteoklas Pada Tulang Alveolar Tikus Sprague Dawley. Pustaka Kesehatan. 2016; 4(1):61-67. https://jurnal.unej.ac.id/index.php/JPK/article/view/2497

Chandra Kumala E, Mardiyantoro F, Mei Sarnia Wahyu Salaras P. Efek Toothgraft Terhadap Jumlah Osteoblas Soket Tikus Pasca Pencabutan. E- Prodenta Journal of Dentistry. 2021;5(2):50–54. http://dx.doi.org/10.21776/ub.eprodenta.2021.005.02.7

Agustina, N., Irnamanda, D. H., & Panjaitan, F. U. A. The Effect Of Hydoxyapatite Xenograft Of Haruan Fish (Channa Striata) Bone On The Number Of Osteoblast And Osteoclast (In Vivo Study On Mandibular Bone of Male Guinea Pigs). Dentino: Jurnal Kedokteran Gigi. 2018;3(2):116-121.http://dx.doi.org/10.20527/dentino.v3i2.5364

Novais A, Chatzopoulou E, Chaussain C, Gorin C. The potential of fgf-2 in craniofacial bone tissue engineering: A review. Cells. 2021 Apr 1;10(4). https://doi.org/10.3390/cells10040932

Kurniawati A, Cholid Z, Indira Hartanto N. The Effect of Giving Wungu Leaves Extract (Graptophyllum Pictum L. Griff) on the Decrease in the Number of Osteoclasts in the Post Extraction Socket of Male Wistar Rats. Journal of International Dental and Medical Research [Internet]. 2022;15(4):1511–5. DOI: https://doi.org/10.20473/j.djmkg.v47.i1.p19-24




DOI: https://doi.org/10.24198/pjd.vol37no1.59308

Refbacks

  • There are currently no refbacks.


Visitor Stat

Creative Commons License
Padjadjaran Journal of Dentistry is licensed under Creative Commons Attribution 4.0 International License