Quantitative and qualitative analysis of goat's milk antibiofilm against Streptococcus mutans and Candida albicans: a laboratory experiment

Santi Chismirina, Evlin Vernanda, Deffan Dericco, Suzanna Sungkar, Sri Rezeki, Shahida Mohd Said

Abstract


Streptococcus mutans and Candida albicans interact in dental plaque biofilm to form a synergistic caries process. As a result, preventing tooth cavities necessitates disrupting the interaction between these two bacteria. This can be accomplished by giving anti-biofilm substances such as goat's milk, which contains lactoferrin, lactoperoxidase, and lysozyme. Candida albicans in dental biofilms promotes more violent caries than biofilms generated only by Streptococcus mutants. This study aimed to analyze the antibiofilm of goat's milk against Streptococcus mutans and Candida albicans biofilm masses quantitatively and qualitatively. Methods: The type of study used was an experimental laboratory with a Post-Test Control Group Design. The study was conducted utilizing the Biofilm Coverage Rate (BCR) and the Biofilm Assay to asses characteristics of the quantitative concentration of biofilm and the SDS-PAGE technique to observe the biofilm protein composition qualitatively. Results: The treatment group's BCR and Biofilm Assay concentrations were 0.45 ± 0.2 lower than the negative control group's 0.78 ± 0.25. Protein profile bands of S. mutans and C. albicans biofilms exposed to goat's milk ranged from 14.4 to 116 kDa. Conclusion: Goat milk exhibits anti-biofilm action against Streptococcus mutans and Candida albicans biofilms.


Keywords


Biofilm, Streptococcus mutans, Candida albicans, Biofilm Coverage Rate (BCR), protein profile

Full Text:

PDF

References


Pakkhesal M, Riyahi E, Alhosseini AN, Amdjadi P, Behnampour N. Impact of dental caries on oral health related quality of life among preschool children: perceptions of parents. BMC Oral Health. 2021;21(1):1-8. https://doi.org/10.1186/s12903-021-01396-4

Niu JY, Yin IX, Wu WKK, Li QL, Mei ML, Chu CH. Antimicrobial peptides for the prevention and treatment of dental caries: A concise review. Arch Oral Biol. 2021;122:105022. https://doi.org/10.1016/j.archoralbio.2020.105022

Cheng L, Li J, He L, Zhou X. Natural products and caries prevention. Caries Res. 2015;49(1):38-45. https://doi.org/10.1159/000377734

Shree P, Singh CK, Sodhi KK, Surya JN, Singh DK. Biofilms: Understanding the structure and contribution towards bacterial resistance in antibiotics. Med Microecol. 2023;16:1-11. https://doi.org/10.1016/j.medmic.2023.100084

Sharma S, Mohler J, Mahajan SD, Stanley AS, Liana B, Aalinkeel Ravikumar. Microbial biofilm a review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms. 2023(11):1614-45. https://doi.org/10.3390/microorganisms11061614

Li X, Liu Y, Yang X, Li C, Song Z. The oral microbiota: community composition, influencing factors, pathogenesis, and interventions. Front Microbiol. 2022;13:1-19. https://doi.org/10.3389/fmicb.2022.895537

Abebe GM. Oral Biofilm and its impact on oral health, psychological and social interaction. Int J Oral Dent Heal. 2021;7(1):127-37. https://doi.org/10.23937/2469-5734/1510127

Lemos J., Palmer S., Zeng L, Wen Z., Kajfasz J., Freires I., et al. The biology of Streptococcus mutans. Microbiol Spectr. 2019;7(1):1-26. https://doi.org/10.1128/microbiolspec.gpp3-0051-2018

Zayed SM, Aboulwafa MM, Hashem AM, Saleh SE. Biofilm formation by Streptococcus mutans and its inhibition by green tea extracts. AMB Express. 2021;11(1):73-82. https://doi.org/10.1186/s13568-021-01232-6

Salehi B, Kregiel D, Mahady G, Sharifi-Rad J, Martins N, Rodrigues CF. Management of Streptococcus mutans-Candida spp. oral biofilms’ infections: Paving the way for effective clinical interventions. J Clin Med. 2020;9(2):1-16. https://doi.org/10.3390/jcm9020517

Li Y, Huang S, Du J, Wu M, Huang X. Current and prospective therapeutic strategies: tackling Candida albicans and Streptococcus mutans cross-kingdom biofilm. Front Cell Infect Microbiol. 2023;11(13):1-16. https://doi.org/10.3389/fcimb.2023.1106231

Kim D, Sengupta A, Niepa THR, Lee BH, Weljie A, Freitas-Blanco VS, et al. Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites. Sci Rep. 2017;7:1-14. https://doi.org/10.1038/srep41332

ALKaisy QH, Al-Saadi JS, AL-Rikabi AKJ, Altemimi AB, Hesarinejad MA, Abedelmaksoud TG. Exploring the health benefits and functional properties of goat milk proteins. Food Sci Nutr. 2023;11(10):5641-56. https://doi.org/10.1002/fsn3.3531

Idamokoro EM. The significance of goat milk in enhancing nutrition security: a scientiometric evaluation of research studies from 1966 to 2020. Agric Food Secur. 2023;12(1):1-17. https://doi.org/10.1186/s40066-023-00441-5

Nayik GA, Jagdale YD, Gaikwad SA, Devkatte AN, Dar AH, Dezmirean DS, et al. Recent insights into processing approaches and potential health benefits of goat milk and its products: A review. Front Nutr. 2021;8:1-16. https://doi.org/10.3389/fnut.2021.789117

Paszczyk B, Czarnowska-Kujawska M, Klepacka J, Tońska E. Health-promoting ingredients in goat’s milk and fermented goat’s milk drinks. Animals. 2023;13(5):1-16. https://doi.org/10.3390/ani13050907

Verruck S, Dantas A, Prudencio ES. Functionality of the components from goat’s milk, recent advances for functional dairy products development and its implications on human health. J Funct Foods. 2019;52:243-57. https://doi.org/10.1016/j.jff.2018.11.017

Kusumaningtyas E, Widiastuti R, Dewantari Kusumaningrum H, Thenawidjaja Suhartono M. Aktivitas antibakteri dan antioksidan hidrolisat hasil hidrolisis protein susu kambing dengan ekstrak kasar bromelin. J Teknol dan Ind Pangan. 2015;26(2):179-88. https://doi.org/10.6066/jtip.2015.26.2.179

Clark S, Mora García M. A 100-year review: Advances in goat milk research. J Dairy Sci. 2017;100(12):10026-44. https://doi.org/10.3168/jds.2017-13287

Guha S, Sharma H, Deshwal GK, Rao PS. A comprehensive review on bioactive peptides derived from milk and milk products of minor dairy species. Food Prod Process Nutr. 2021;3(2):1-22. https://doi.org/10.1186/s43014-020-00045-7

Qiao Z, Wang J, He Z, Pan L, Feng K, Peng X, et al. A Novel angiotensin i-converting enzyme inhibitory peptide derived from goat milk casein hydrolysate modulates angiotensin ii-stimulated effects on vascular smooth muscle cells. Front Nutr. 2022;9:1-15. https://doi.org/10.3389/fnut.2022.878768

Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: An emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563-75. https://doi.org/10.1038/nrmicro.2016.94

Hejazinia F, Fozouni L, Azami NS, Mousavi S. The Anti-biofilm activity of oregano essential oil against dental plaque-forming Streptococcus mutans in vitro and in vivo. J Kermanshah Univ Med Sci. 2020;24(3):1-7. https://doi.org/10.5812/jkums.107680

Yu OY, Zhao IS, Mei ML, Lo ECM, Chu CH. Dental biofilm and laboratory microbial culture models for cariology research. Dent J. 2017;5(21):1-12. https://doi.org/10.3390/dj5020021

Ranganathan V, Akhila C. Streptococcus mutans: has it become prime perpetrator for oral manifestations? J Microbiol Exp. 2019;7(4):207-13. https://doi.org/10.15406/jmen.2019.07.00261

Kilic P, Yalcin M, Karabudak S, Cosar B, Savran BN. Residual protein analysis by SDS – PAGE in clinically manufactured BM-MSC products. 2024;1-12. https://doi.org/10.1002/elps.202300286

Momeni SS, Patrick P, Wiener HW, Cutter GR, Ruby JD, Cheoin K, et al. Mutans streptococci enumeration and genotype selection using different bacitracin-containing media. J Microbiol Methods. 2014;103:53-66.https://doi.org/10.1016/j.mimet.2014.05.010

Forster MT, Selene M, Antonia D, Graf K, Polke M, Jacobsen ID, et al. Enemies and brothers in arms Candida albicans and Gram‐positive bacteria. Cellular Microbiology. 2016; 18:1709–15. https://doi.org/10.1111/cmi.12657

Tan CT, Xu X, Qiao Y, Wang Y. A peptidoglycan storm caused by β-lactam antibiotic’s action on host microbiota drives Candida albicans infection. Nat Commun. 2021;12(1):2560-72. https://doi.org/10.1038/s41467-021-22845-2

Magacz M, Alatorre-Santamaria S, Kedsiora K, Klasa K, Mamica P, Pepasinska W, et all. Modified lactoperoxidase system as a promising anticaries agent: In vitro studies on Streptococcus mutans biofilms. Int J Mol Sci. 2023;24:1-18. https://doi.org/10.3390/ijms241512136

Prihanto AA, Sukoso S, Fadjar M, Kurniawan A. A simple and effective method for calculation and 3D visualization of biofilm produced by Vibrio cholerae. Media Litbangkes. 2015;25(3):147-52.

Sakimura T, Kajiyama S, Adachi S, Chiba K, Yonekura A, Tomita M, et al. Biofilm-forming Staphylococcus epidermidis expressing vancomycin resistance early after adhesion to a metal surface. Biomed Res Int. 2015;2015:1-8. https://doi.org/10.1155/2015/943056

Wong GCL. Three-dimensional architecture of Vibrio cholerae biofilms. Proc Natl Acad Sci USA. 2016;113(14):3711-13. https://doi.org/10.1073/pnas.1603016113

Silva E, Oliveira J, Silva Y, Urbano S, Sales D, Moraes E, et al. Lactoperoxidase system in the dairy industry: Challenges and opportunities. Czech J Food Sci. 2020;38(6):337-46. https://doi.org/10.17221/103/2020-CJFS

Freitas WR, Nascimento TCE da S, Lins LF, Silva JL, Moreira KA, Batista AMV, et al. Lactoperoxidase enzyme activity and thiocyanate levels in raw milk of Girolando cows. Med Vet. 2020;14(4):334-40. https://doi.org/10.26605/medvet-v14n4-2544

Eker F, Akdaşçi E, Duman H, Yalçınta YM, Canbolat AA, Kalkan AE, et al. Antimicrobial properties of colostrum and milk. Antibiotics. 2024;13(3):1-28. https://doi.org/10.3390/antibiotics13030251

Magacz M, Kędziora K, Sapa J, Krzyściak W. The significance of lactoperoxidase system in oral health: Application and efficacy in oral hygiene products. Int J Mol Sci. 2019;20(6):1443-73. https://doi.org/10.3390/ijms20061443

Azizkhani M, Saris PEJ, Baniasadi M. An in-vitro assessment of antifungal and antibacterial activity of cow, camel, ewe, and goat milk kefir and probiotic yogurt. J Food Meas Charact. 2021;15(1):406-15. https://doi.org/10.1007/s11694-020-00645-4

Soesanto S, Hepziba ER, Yasnil, Widyarman AS. Prevention and treatment of white spot lesions in orthodontic patients. Contemp Clin Dent. 2017;8(1):11–9. https://doi.org/10.4103/ccd.ccd_216_17

Biadała A, Konieczny P. Goat’s milk-derived bioactive components - A review. Mljekarstvo. 2018;68(4):239-53. https://doi.org/10.15567/mljekarstvo.2018.0401

Zamrik NA, Ishak MI, Abdullah N, Sulaiman WS. Effects of goat milk and its products on human pathogenic bacteria: A systematic review. Adv Sci Lett. 2017;23(5):4686-91. https://doi.org/1166/asl.2017.8949

Yousefi M, Nematollahi A, Shadnoush M, Mortazavian AM, Khorshidian N. Antimicrobial activity of films and coatings containing lactoperoxidase system: A review. 2022;9:1-14. https://doi.org/10.3389/fnut.2022.828065

Krzyściak W, Jurczak A, Kościelniak D, Bystrowska B, Skalniak A. The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis. 2014;33(4):499-515. https://doi.org/10.1007/s10096-013-1993-7

Mohammed Ghilan AK, Alharbi NS, Khaled JM, Kadaikunnan S, Alobaidi AS. Virulence factors analysis and determination of the suitable chemical agent to inhibit Streptococcus mutans growth and biofilm formation. J King Saud Univ-Sci. 2023;35(8):102892. https://doi.org/10.1016/j.jksus.2023.102892

Vincent D, Elkins A, Condina MR, Ezernieks V, Rochfort S. Quantitation and identification of intact major milk proteins for high-throughput LC-ESI-Q-TOF MS analyses. PLoS One. 2016;11(10):1-21. https://doi.org/10.1371/journal.pone.0163471

Da Costa WKA, De Souza EL, Beltrão-Filho EM, et al. Comparative protein composition analysis of goat milk produced by the alpine and saanen breeds in Northeastern Brazil and related antibacterial activities. PLoS One. 2014;9(3):1-8. https://doi.org/10.1371/journal.pone.0093361




DOI: https://doi.org/10.24198/pjd.vol37no2.61674

Refbacks

  • There are currently no refbacks.


Visitor Stat

Creative Commons License
Padjadjaran Journal of Dentistry is licensed under Creative Commons Attribution 4.0 International License