Ethyl acetate fractions of Cordyline fruticosa leaf: Chemical composition and cariogenic antimicrobial activity
Abstract
Introduction: Early childhood caries (ECC) is a prominent oral health problem, especially among low socioeconomic status (SES) groups. The development of herbal agents for caries prevention is essential due to the elevated costs and potential adverse effects linked to existing synthetic pharmaceuticals. Cordyline fruticosa (L.) A. Chev. (CF), prevalent in Indonesian rural regions, is an ornamental plant recognised for its medicinal properties, especially its antimicrobial efficacy. This study aimed to identify the chemical compounds in the ethyl acetate fraction of CF leaf extract and evaluate its antibacterial and antifungal activities against Streptococcus mutans (S. mutans) and Candida albicans (C. albicans), the main microorganisms associated with early childhood caries. Methods: This study used a laboratory experimental method. CF leaf extract was fractionated using ethyl acetate. Phytochemical and GC-MS screening were performed to identify secondary metabolites and chemical compounds. S. mutans and C. albicans were isolated from supragingival plaque samples of pediatric patients with severe ECC. The Minimum Inhibitory Concentration (MIC) was determined via serial dilution and ELISA spectrophotometry by comparing absorbance or optical density (OD) values before and after incubation.Results: Phytochemical screening confirmed the presence of phenolic compounds, flavonoids, tannins, and triterpenoids. GC-MS identified 4 chemical compounds, of which the largest peak area (73.88%) corresponding to 5-hydroxymethylfurfural. The MIC for S. mutans was 3.125% and 1.56% for C. albicans. Conclusion: The ethyl acetate fraction of the CF leaf extract exhibits antibacterial and antifungal properties and may function as a cariogenic antimicrobial agent.
Keywords
Full Text:
PDFReferences
AAPD. Policy on Early Childhood Caries (ECC): Classifications, Consequences, and Preventive Strategies. The Reference Manual of Pediatric Dentistry.; 2021. https://www.aapd.org/globalassets/media/policies_guidelines/p_eccconsequences.pdf
Anil S, Anand PS. Early childhood caries: Prevalence, risk factors, and prevention. Front Pediatr. 2017;5(July):1-7. https://doi.org/10.3389/fped.2017.00157
Amalia R, Chairunisa F, Alfian MF, Supartinah A. Indonesia: Epidemiological Profiles of Early Childhood Caries. Front Public Heal. 2019;7(AUG):210. https://doi.org/10.3389/FPUBH.2019.00210
Jiang S, Gao X, Jin L, Lo ECM. Salivary microbiome diversity in caries-free and caries-affected children. Int J Mol Sci. 2016;17(12). https://doi.org/10.3390/ijms17121978
Richardson JP. Candida albicans: A Major Fungal Pathogen of Humans. Richardson JP, ed. Pathogens. 2022;11(4):1-4. https://doi.org/10.3390/pathogens11040459
Sridhar S, Suprabha BS, Shenoy R, Suman E, Rao A. Association of Streptococcus Mutans, Candida Albicans and Oral Health Practices with Activity Status of Caries Lesions Among 5-Year-Old Children with Early Childhood Caries. Oral Health Prev Dent. 2020;18(1):911-919. https://doi.org/10.3290/j.ohpd.a45411
Ellepola K, Truong T, Liu Y, et al. Multi-omics Analyses Reveal Synergistic Carbohydrate. Infect Immun. 2019;87(10):1-20.
Du Q, Ren B, Zhou X, Zhang L, Xu X. Cross-kingdom interaction between Candida albicans and oral bacteria. Front Microbiol. 2022;Volume 13-2022. https://doi.org/10.3389/fmicb.2022.911623.
Ximenes M, Cardoso M, Astorga F, Arnold R, Pimenta LA, Viera R de S. Antimicrobial activity of ozone and NaF-chlorhexidine on early childhood caries. Braz Oral Res. 2017;31. https://doi.org/10.1590/1807-3107BOR-2017.VOL31.0002
Fiorillo L. Chlorhexidine gel use in the oral district: A systematic review. Gels. 2019;5(2):1-16. doi:10.3390/gels5020031
Kőhidai Z, Takács A, Lajkó E, et al. The effects of mouthwashes in human gingiva epithelial progenitor (HGEPp) cells. Clin Oral Investig. 2022;26(6):4559-4574. https://doi.org/10.1007/s00784-022-04422-z
Spaggiari C, Annunziato G, Costantino G. Ursolic and oleanolic acids: two natural triterpenoids targeting antibacterial multidrug tolerance and biofilm formation. Front Nat Prod. 2024;3. https://doi.org/10.3389/fntpr.2024.1456361
Firdaus NS, Fauziah E, Sutadi H. Antibacterial effectiveness of Virgin Coconut Oil Mousse against Streptococcus mutans Biofilm in early childhood caries. J Int Dent Med Res. 2019;12(2):429-433.
Pratiwi PD, Budiardjo SB, Fauziah E, Rizal MF. Garlic Extract Effectivity Against the Viability of Biofilms Produced by Streptococcus mutans Serotypes C and F in Pediatric Patients with Early Childhood Caries. J Int Dent Med Res. 2019;12(3):894-899.
Fouedjou RT, Tsakem B, Siwe-Noundou X, et al. Ethnobotany, Phytochemistry, and Biological Activities of the Genus Cordyline. Biomolecules. 2023;13(12). https://doi.org/10.3390/biom13121783
Elfita, Muharni, Mardiyanto, Fitrya. Chemical Compounds from the Antibacterial Active Fraction of Cordyline fruticosa (L). IOP Conf Ser Earth Environ Sci. 2021;709(1). https://doi.org/10.1088/1755-1315/709/1/012048
Elfita, Mardiyanto, Fitrya, et al. View of Antibacterial activity of Cordyline fruticosa leaf extracts and its endophytic fungi extracts. BIODIVERSITAS. 2019;20(12):3804-3812. Accessed December 1, 2021. https://smujo.id/biodiv/article/view/4530/3560
Alphianti L., Bachtiar E., Suniarti D., Fauziah E. Identification of bioactive compounds in Cordyline fruticosa (L.) A. Chev. leaf extract and its antimicrobial activity against cariogenic microorganisms Likky. J Adv Pharm Technol Res. 2025;16(3):156-162. https://doi.org/10.4103/japtr.japtr
Nguyen NT, Vo TLH. Fabrication of Silver Nanoparticles Using Cordyline fruticosa L. Leave Extract Endowing Silk Fibroin Modified Viscose Fabric with Durable Antibacterial Property. Polymers (Basel). 2022;14(12):1-22. https://doi.org/10.3390/polym14122409
Abubakar AR, Haque M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. J Pharm Bioallied Sci. 2020;12(1):1. https://doi.org/10.4103/JPBS.JPBS_175_19
Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016;6(2):71-79. https://doi.org/10.1016/j.jpha.2015.11.005
Preethy NA, Somasundaram S. Antimicrobial efficacy of vaccinium macrocarpon mouthwash against steptococcus mutans in dental plaque of caries active children – a randomized controlled trial. Int J Res Pharm Sci. 2021;12(1):12-16. https://doi.org/10.26452/ijrps.v12i1.3906
Stromsnes K, Lagzdina R, Olaso‐gonzalez G, Gimeno‐mallench L, Gambini J. Pharmacological properties of polyphenols: Bioavailability, mechanisms of action and biological effects in in vitro studies, animal models and humans. Biomedicines. 2021;9(8). https://doi.org/10.3390/biomedicines9081074
Zagoskina N V., Zubova MY, Nechaeva TL, et al. Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). Int J Mol Sci. 2023;24(18). https://doi.org/10.3390/ijms241813874
Fouedjou RT, Nguelefack EP, Ponou BK, Nguelefack TB, Barboni L, Tapondjou LA. Antioxidant Activities and Chemical Constituents of Extracts from Cordyline fruticosa (L.) A. Chev. (Agavaceae) and Eriobotrya japonica (Thunb) Lindl, (Rosaceae). Pharmacologia. 2016;7(2). https://doi.org/10.5567/pharmacologia.2016.103.113
Editor. In: Vanderah TW. eds. Katzung’s Basic & Clinical Pharmacology, 16th Edition. McGraw-Hill; 2024. Accessed October 27, 2025. https://accessmedicine.mhmedical.com/content.aspx?bookid=3382§ionid=281742043.
Chudzik M, Korzonek-Szlacheta I, Król W. Triterpenes as potentially cytotoxic compounds. Molecules. 2015;20(1):1610-1625. https://doi.org/10.3390/molecules20011610
Menon S, Liang X, Vartak R, et al. Antifungal activity of novel formulations based on terpenoid prodrugs against C. albicans in a mouse model. Pharmaceutics. 2021;13(5). https://doi.org/10.3390/pharmaceutics13050633
Widyarman AS, Lay SH, Wendhita IP, Tjakra EE, Murdono FI, Binartha CTO. Indonesian Mangosteen Fruit (Garcinia mangostana L.) Peel Extract Inhibits Streptococcus mutans and Porphyromonas gingivalis in Biofilms In vitro. Contemp Clin Dent. 2019;8(January-March):123-128. https://doi.org/10.4103/ccd.ccd
Habisukan UH, Elfita, Widjajanti H, Setiawan A. Chemical characterization of secondary metabolite from the endophytic fungus trichordema reecei isolated from the twig of syzygium aqueum. Sci Technol Indones. 2021;6(3):137-143. https://doi.org/10.26554/sti.2021.6.3.137-143
Naher S, Akter MI, Rahman SMM, Sajon SR, Aziz MA. Analgesic, anti-inflammatory and anti-pyretic activities of methanolic extract of Cordyline fruticosa (L.) A. Chev. Leaves. J Res Pharm. 2019;23(2):198-207. https://doi.org/10.12991/jrp.2019.125
Rajkumari J, Borkotoky S, Reddy D, et al. Anti-quorum sensing and anti-biofilm activity of 5-hydroxymethylfurfural against Pseudomonas aeruginosa PAO1: Insights from in vitro, in vivo and in silico studies. Microbiol Res. 2019;226:19-26. https://doi.org/10.1016/j.micres.2019.05.001
Zouari M, Poohphajai F, Meile K, Mikuljan M, Herrera Diaz R. Properties and anti-fungal activity of liquid by-products from softwood bark carbonization. Bioresour Bioprocess. 2025;12(1). https://doi.org/10.1186/s40643-025-00875-8
Oramahi HA, Yoshimura T, Rusmiyanto E, Wardoyo P. Antifungal and antitermitic activities of vinegars from two biomass resources at different pyrolytic temperatures. Vol 14.; 2020. https://www.jabsonline.org/index.php/jabs/article/view/705
Teoh YP, Mat Don MMD. Extraction of 4H-Pyran-4-One, 2,3- Dihydro -6-Methyl-, an Alternative Antifungal Agent, From Schizophyllum Commune: Optimization and Kinetic Study. Borneo Sci | J Sci Technol. 2016;37(1). https://doi.org/10.51200/bsj.v37i1.4969
Oruma US, Ukoha PO, Uzoewulu CP, et al. Synthesis, biological and in silico studies of a tripodal schiff base derived from 2,4,6-triamino-1,3,5-triazine and its trinuclear Dy(III), Er(III), and Gd(III) salen capped complexes. Molecules. 2021;26(14). https://doi.org/10.3390/molecules26144379
Panklai T, Ingkaninan K, Chootip K, et al. Vasorelaxant and hypotensive effects of an ethanolic extract of Nymphaea pubescens and its main compound quercetin 3-methyl ether 3′-O-β-xylopyranoside. Front Pharmacol. 2024;15. https://doi.org/10.3389/fphar.2024.1379752
Zouine N, Ghachtouli N El, Abed S El, Koraichi SI. A comprehensive review on medicinal plant extracts as antibacterial agents: Factors, mechanism insights and future prospects. Sci African. 2024;26. https://doi.org/10.1016/j.sciaf.2024.e02395
Teoh YP, Mat Don MMD. Extraction of 4H-Pyran-4-One, 2,3- Dihydro -6-Methyl-, an Alternative Antifungal Agent, From Schizophyllum Commune: Optimization and Kinetic Study. Borneo Sci | J Sci Technol. 2016;37(1). https://doi.org/10.51200/bsj.v37i1.4969
Rizvi SNR, Afzal S, Khan K-u-R, Aati HY, Rao H, Ghalloo BA, Shahzad MN, Khan DA, Esatbeyoglu T, Korma SA. Chemical Characterisation, Antidiabetic, Antibacterial, and In Silico Studies for Different Extracts of Haloxylon stocksii (Boiss.) Benth: A Promising Halophyte. Molecules. 2023; 28(9):3847. https://doi.org/10.3390/molecules28093847.
DOI: https://doi.org/10.24198/pjd.vol37no3.64444
Refbacks
- There are currently no refbacks.
All publications by the Universitas Padjadjaran [e-ISSN: 2549-6212, p-ISSN: 1979-0201] are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License .





.png)
