Perbedaan intensitas transmitansi pelepasan senyawa hidroksil mineral trioxide aggregate, nano silika sekam padi hasil metode sol-gel dan pirolisis

Differences in the transmittance intensity of hydroxyl release from mineral trioxide aggregate, sol-gel, and pyrolysis nano-silica of rice husk

Iffi Aprillia, Sarmayana Sarmayana, Endang Suprastiwi

Abstract


Pendahuluan: Mineral trioxide aggregate (MTA) diketahui memanfaatkan sifat reaktif gugus hidroksil dari permukaan nano silika yang dikandungnya untuk remineralisasi jaringan. Sementara itu, silika berukuran nano dapat diekstraksi dari sekam padi melalui metode sol-gel dan pirolisis. Tujuan penelitian menganalisis perbedaan intensitas transmitansi pelepasan senyawa hidroksil yang dihasilkan oleh MTA, nano silika sekam padi hasil metode sol-gel dan pirolisis. Metode: Jenis penelitian eksperimen laboratori. Sebanyak 3 sampel yang terdiri dari masing-masing bubuk sampel MTA, nano silika sekam padi sol-gel dan nano silika sekam padi pirolisis sebanyak 0,14 mg dicampurkan dengan 0,2 ml aquades dan dibiarkan mengeras selama 15 menit. Hasil campuran kemudian diukur menggunakan alat Fourier Transform Infrared Spectroscopy (FTIR) dan dilihat intensitas transmitansinya. Hasil karakteristik FTIR kemudian dianalisis secara kualitatif. Hasil: Ketiga sampel uji melepaskan gugus fungsi -OH di kisaran gelombang 3000-3500. Sampel MTA memperlihatkan intensitas puncak transmitansi gugus -OH paling tinggi. Sample nano silika sol-gel memperlihatkan intensitas puncak transmitansi gugus –OH lebih tinggi dibandingkan nano silika pirolisis. Sampel MTA memperlihatkan keberadaan gugus karbonat (CO3-2) yang tidak terdapat pada kedua sampel nano silika, sementara kedua sampel nano silika memperlihatkan gugus siloksan (Si-O-Si) yang tidak terdapat pada sampel MTA. Simpulan: MTA menghasilkan intesitas transmitans senyawa hidroksil paling tinggi, yang menandakan MTA dapat melepaskan gugus hidroksil paling banyak dibandingkan sampel nano silika sol-gel dan nano silika pirolisis.

Kata Kunci: Mineral Trioxide Aggregate (MTA), nano silika sekam padi metode sol-gel, nano silika sekam padi metode pirolisis, pelepasan senyawa hidroksil, Fourier Transform Infrared Spectroscopy (FTIR).

 

ABSTRACT

Introduction: Mineral trioxide aggregate (MTA) is known to take advantage of the reactive properties of the hydroxyl groups from the surface of the nano-silica for tissue remineralisation. Meanwhile, nano-sized silica can be extracted from rice husks through sol-gel and pyrolysis methods. The research objective was to analyse the differences in the transmittance intensity of hydroxyl compounds released by MTA, nano-silica of rice husks resulting from the sol-gel method and pyrolysis. Methods: This research was an experimental laboratory. A total of 3 samples consisted of MTA powder, sol-gel nano-silica rice husk and pyrolysis nano-silica rice husk, 0.14 mg each, mixed with 0.2 ml of distilled water and hardened still for 15 minutes. The mixture results was then measured using a Fourier Transform Infrared Spectroscopy (FTIR) instrument, and then the intensity of the transmittance was observed. The results of the FTIR characteristics were then analysed qualitatively. Results: All samples release the -OH functional group in the wave range of 3000-3500. The MTA sample showed the highest intensity of the -OH group transmittance. The sol-gel nano-silica samples showed higher intensity of the –OH group transmittance than the pyrolysis nano-silica. The MTA sample showed a carbonate group (CO3-2) which was not present in another two nano-silica samples, while the two nano-silica samples showed a siloxane (Si-O-Si) group that was not present in the MTA sample. Conclusion: MTA produces the highest transmittance intensity of hydroxyl compounds, which indicates that MTA can release the most hydroxyl groups compared to sol-gel nano-silica and pyrolysis nano-silica samples.

Keywords: MTA (mineral trioxide aggregate), sol-gel nano-silica rice husk, pyrolysis nano-silica rice husk, hydroxyl compounds release, Fourier Transform Infrared Spectroscopy (FTIR).


Keywords


mineral trioxide aggregate (MTA); nano-silika sekam padi metode sol-gel; nano-silika sekam padi metode pirolisis; pelepasan senyawa hidroksil; Fourier Transform Infrared Spectroscopy (FTIR); MTA (mineral trioxide aggregate); sol-gel nano-silica rice husk

Full Text:

PDF

References


Primathena I, Nurdin D, Farah Adang RA, Cahyanto A. Composition and functional groups evaluation of Indonesian Grey Portland cement as material for dental application. Key Eng Mater. 2018;782:256–61.

Yuliatun L, Riyawati A. Bahan dasar pembuatan mineral trioxide aggregate. Natrium Free Silica From Rice Husk Waste As a Basic Material for the Making of Agioregate Trioxide Aggregate. 2019; 1(1): 1–7. DOI: 10.35970/jppl.v1i1.38

Wooha S, Weiss D, Weitzmann MN, Jr-Beck GR. Aplications of silica-based nanomaterials in dental and skeletal biology. 2nd ed. Nanobiomaterial in clinical dentistry; 2019. p. 77-112. DOI: 10.1016/B978-0-12-815886-9.00004-8

Chang SW. Chemical characteristics of mineral trioxide aggregate and its hydration reaction. Restor Dent Endod. 2012; 37(4): 188-93. DOI: 10.5395/rde.2012.37.4.188.

Permatasari N, Sucahya TN, Dani Nandiyanto AB. Review: Agricultural Wastes as a Source of Silica Material. Indones J Sci Technol. 2016; 1(1): 825. DOI: 10.17509/ijost.v1i1

Noushad Mohammed, Rahman Ismail Ab, Zulkifli Noor Sheeraz Che, husein Adam, Mohamad Dasmawati. Low Surface Area Nanosilica from an Agericultural Biomass for Fabrication of Dental Nanocomposites. 2013; 40: 4163-71. DOI: 10.1016/j.ceramint.2013.08.073

Nandiyanto ABD, Oktiani R, Ragadhita R. How to read and interpret ftir spectroscope of organic material. Indones J Sci Technol. 2019; 4(1): 97–118. DOI: 10.17509/ijost.v4i1.15806

Mathew R, Turdean-Ionescu C, Yu Y, Stevensson B, Izquierdo-Barba I, García A, et al. Proton Environments in Biomimetic Calcium Phosphates Formed from Mesoporous Bioactive CaO- SiO2-P2O5 Glasses in Vitro: Insights from Solid-State NMR. J Phys Chem C. 2017; 121(24): 13223–38. DOI: 10.1021/acs.jpcc.7b03469

Tian L, Peng C, Shi Y, Xuan G, Zhong B, Qi J, et al. Effect of mesoporous silica nanoparticles on dentinal tubule occlusion: An in vitro study using sem and image analysis. Dent Mater J. 2014; 33(1): 125–32. DOI: 10.4012/dmj.2013-215.

Magdalena P, Katarzyna C, Andrian S, Wieslaw S. Preparation and in vitro characterisation of bioactive mesoporous silica microparticles for drug delivery applications. 2016; 60: 7-18. DOI: 10.1016/j.msec.2015.11.017.

Yuhong F, Niyu Z, Yafei S, Xinlei G, Mindong C. Micromesoporous carbon from original and pelletized rice husk via one-step catalytic pyrolysis. Bioresource technology 2018; 269: 67-73. DOI: 10.1016/j.biortech.2018.08.083

Potapov VV. Density of Silanol Groups on the Surface of Silica Precipitated from a Hydrothermal Solution. Russ J Phys Chemist. 2019; 80(7): 1119-28. DOI: 10.1134/S003602440607021

Sankar S, Sharma SK, Kaur N, Lee B, Kim DY, Lee S, et al. Biogenerated silica nanoparticles synthesized from sticky, red, and brown rice husk ashes by a chemical method. Ceram Int. 2016; 42(4): 4875–85. DOI: 10.1016/j.ceramint.2015.11.172

Priyadarsini S, Mukherjee S, Mishra M. Nanoparticles used in dentistry: A review. J Oral Biol Craniofacial Res [Internet]. 2018;8(1):58–67. DOI: 10.1016/j.jobcr.2017.12.004

Dammaschke T, Goupy L. Focus on biodentine – an overview. 1st ed. Septodont case studiest collection. Septodont : The dental pharmaceuctical company. 2012; p. 4-9

Beck GR Jr, Ha SW, Camalier CE, Yamaguchi M, Li Y, Lee JK, Weitzmann MN. Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomedicine. 2012; 8(6): 793-803. DOI: 10.1016/j.nano.2011.11.003.




DOI: https://doi.org/10.24198/pjdrs.v5i1.31350

Refbacks

  • There are currently no refbacks.


       

      

  

Statistik Pengunjung

Creative Commons License
Padjadjaran Journal of Dental Researchers and Students dilisensikan di bawah Creative Commons Attribution 4.0 International License