Efek paparan gas ozon terhadap mikroba saliva rongga mulut
Effects of ozone gas exposure on oral saliva microbesAbstract
ABSTRAK
Pendahuluan: Saliva merupakan salah satu sumber penyebaran infeksi selama perawatan gigi, yang menghasilkan bioaerosol. Prosedur asepsis perlu dilakukan untuk mengontrol bioaerosol sebagai upaya mengurangi risiko infeksi. Berbagai bahan asepsis telah digunakan, dengan kelebihan dan kekurangannya. Inovasi penggunaan bahan lain sangat diperlukan untuk mencapai kondisi asepsis secara efektif namun efisien. Salah satu ide inovatif adalah penggunaan gas ozon untuk berbagai prosedur asepsis di klinik gigi. Penelitian ini bertujuan menganalisis efek paparan gas ozon terhadap mikroba saliva rongga mulut secara in-vitro. Metode: Penelitian dilakukan dengan sampel dari 60 ml air kumur 15 orang relawan, menggunakan aquades selama 60 detik, kemudian diencerkan dengan saline hingga volume mencapai 100 ml. Gas ozon total 384 gram dialirkan ke dalam larutan air kumur ini, selama 120 detik. Sejumlah 20 ml larutan sampel dituang merata dalam media Plate count agar (PCA) dan diinkubasi selama 24 jam, untuk kelompok sebelum diberi perlakuan gas ozon (Kelompok Pre-test) dan setelah perlakuan (Kelompok Post-test). Data penelitian berupa jumlah koloni mikroba (CFU) yang tumbuh pada media PCA. Data penelitian dianalisis dengan uji Wilcoxon. Hasil: Rerata jumlah koloni mikroba Kelompok Pre-test 4,36 ± 0,17 dan kelompok Post-test 2,40±0,3 Hasil uji Wilcoxon menunjukkan Jumlah koloni mikroba mengalami penurunan signifikan p=-3,29 (P<0,05). Paparan gas ozon selama 120 detik menurunkan jumlah mikroba rata-rata sebesar 55%. Beberapa mikroba lolos hidup, diduga karena adanya variabilitas biologis atau resistensi terhadap ozon. Simpulan: Gas ozon mempunyai efek menurunkan jumlah koloni mikroba saliva.
Kata kunci: ozon; antimikroba; asepsis
ABSTRACT
Introduction: Saliva is a source of infection spread during dental treatment, producing bioaerosols. Aseptic procedures need to be carried out to control bioaerosols to reduce infection risk. Various widespread aseptic materials hold specific advantages and disadvantages. Therefore, innovation of other materials is needed to achieve aseptic conditions effectively and efficiently. One of the innovative ideas is ozone gas for various aseptic procedures in dental clinics. This study was aimed to analyse the effect of ozone gas exposure on oral saliva microbes in-vitro. Methods: The study was conducted with a sample of 60 ml of mouthwash residue from 15 volunteers, which was distilled for 60 seconds, then diluted with saline until the volume reached 100 ml. A total of 384 grams of ozone gas flowed into this solution for 120 seconds. A total of 20 ml of sample solution was poured evenly in plate count agar (PCA) media and incubated for 24 hours for the group before being treated with ozone gas (pre-test group) and after treatment (post-test group). Research data was the number of microbial colonies (CFU) that grew on PCA media. Research data were analysed by the Wilcoxon test. Results: The mean number of microbial colonies in the pre-test group was 4.36 ± 0.17 and the post-test group 2.40 ± 0.3. The Wilcoxon test results showed that microbial colonies decreased significantly p=-3,29 (p<0.05). Ozone gas exposure for 120 seconds reduced microbial counts by an average of 55%. However, some microbes survived, presumably due to biological variability or resistance to ozone. Conclusions: Ozone gas has the effect of reducing the number of salivary microbial colonies.
Keywords: ozone; antimicrobial; aseptic
Keywords
Full Text:
PDFReferences
DAFTAR PUSTAKA
Gallagher JE, K CS, Johnson IG, Al-Yaseen W, Jones R, McGregor S, et al. A systematic review of contamination (aerosol, splatter and droplet generation) associated with oral surgery and its relevance to COVID-19. BDJ Open. 2020;6(1):25-32. DOI: 10.1038/s41405-020-00053-2
Polednik B. Exposure of staff to aerosols and bioaerosols in a dental office. Build and Envir. 2021; 187: 1-13. DOI: 10.1016/j.buildenv.2020.107388
Amtha R, Gunardi I, Dewanto I, Widyarman AS, Theodorea CF. Panduan dokter gigi dalam era new normal. Monograph Press. 2020; 1(1): 49-58. DOI: 10.32793/monograph.v1i1.601
Britton HC, Draper M, Talmadge JE. Antimicrobial efficacy of aqueous ozone in combination with short chain fatty acid buffers. Infec Prev in Pract. 2020; 2(1):1-7. DOI: 10.1016/j.infpip.2019.100032.
Fitria S, Sidik MAB, Buntat Z, Nawawi Z, Jambak MI, Kamarudin NN, et al. Efficacy of dissolved ozone against S.aureus and B.cereus. J Ecol Eng. 2019; 20(11): 76-81. DOI: 10.12911/22998993/113037
Prayitno, Saroso H, Hardjono, Rulianah S. The Effect of contact time and ozon dose to polutants reduction in hospital wastewater. JBAT. 2018; 7(1): 41-47. DOI: 10.15294/jbat.v7i1.11401
Megahed A, Aldridge B, Lowe J (2018) The microbial killing capacity of aqueous and gaseous ozone on different surfaces contaminated with dairy cattle manure. PLoS ONE 13(5): e0196555. DOI: 10.1371/journal.pone.0196555
Mohan M, Jagannathan N. The efficacy of pre-procedural mouth rinse on bacterial count in dental aerosol following oral prophylaxis. Dent and Med Prob. 2016; 53(1): 78-82. DOI: 10.3389/fmed.2021.600769
Fontes B, Heimbecker AMC, de Souza Brito G, Costa SF, van der Heijden IM, Levin AS, et al. Effect of low-dose gaseous ozone on pathogenic microbes. BMC Infect Dis. 2012; 12(1): 358-369. DOI: 10.4081/ijfs.2014.1680
Ximenes M, Cardoso M, Astorga F, Arnold R, Pimenta A, Viera RS. Antimicrobial activity of ozone and NaF-chlorhexidine on early childhood caries. Braz Oral Res. 2017; 31(13):1-10. DOI: 10.1590/1807-3107BOR-2017.vol31.0002
Grignani E, Mansi A, Cabella R, Castellano P, Tirabasso A, Sisto R, et al. Safe and effective use of ozone as air and surface disinfectant in the conjuncture of Covid-19. Gases. 2021; 1(1): 19-32. DOI: 10.3390/gases1010002
Ouf SA, Moussa TA, Abd-Elmegeed AM, Eltahlawy SR. Anti-fungal potential of ozone against some dermatophytes. Braz. J. Microbiol. 2016; (47): 697–702. DOI: 10.1016/j.bjm.2016.04.014.
Blanco A, Ojembarrena FB, Clavo B, Negro C. Ozone potential to fight against SAR-COV-2 pandemic: facts and research needs. Envir Sci Pollut Res Int. 2021; 28(13): 16517-31. DOI: 10.1007/s11356-020-12036-9
Teke S, Nur M, Winarni TA. Analisis produksi ozon dalam reaktor dielectric barrier discharge plasma (dbdp) terkait panjang reaktor dan laju alir udara serta pemanfaatannya untuk menjaga kualitas asam amino ikan. Berkala Fisika. 2014; 17(1): 25-32.
Reddy S, Reddy N, Dinapadu S, Reddy M, Pasari S. Role of ozone therapy in minimal intervention dentistry and endodontics-a review. J Int oral health: JIOH. 2013; 5(3): 102.
Sadatullah S, Mohamed NH, Razak FA. The antimicrobial effect of 0.1 ppm ozonated water on 24-hour plaque microorganisms in situ. Braz Oral Res. 2012; 26(2): 126-31. DOI: 10.1590/s1806-83242012000200007
Cesar J, Sumita TC, Junqueira JC, Jorge AO, do Rego MA. Antimicrobial effects of ozonated water on the sanitization of dental instruments contaminated with E. coli, S. aureus, C. albicans, or the spores of B. atrophaeus. J Inf Pubc Health. 2012; 5(4): 269-74. DOI: 10.1016/j.jiph.2011.12.007.
Goztas Z, Onat H, Tosun G, Sener Y, Hadimli HH. Antimicrobial effect of ozonated water, sodium hypochlorite and chlorhexidine gluconate in primary molar root canals. Eur J Dent. 2014; 8(4): 469-74. DOI: 10.4103/1305-7456.143627
Guilani G. Ricevuti G. Galoforo A. Franzini M. Microbial aspects of ozone : bactericidal activity and antibiotic/antimicrobial resistance in bacterial strains treated with ozone. Ozone Therapy. 2018; 3(3): 48-51. DOI: 10.4081/ozone.2018.7971
Santos LMC, Silva ES, Oliveira FO, Rodrigues LAP, Neves PRF, Meira CS, Moreira GAF, et al. Ozonized water in microbial control: analysis of the stability, in vitro biocidal potential, and cytotoxicity. Biology. 2021; 10(6): 525-34. DOI: 10.3390/biology10060525
Feng L, Zhang K, Gao M, Shi C, Ge C, Qu D, et al. Inactivation of Vibrio parahaemolyticus by aqueous ozone. J Microb Biotech. 2018; 28(8): 1233-46. DOI: 10.4014/jmb.1801.01056
Baroudi K, Dagli R, Dagli N, Darwish S. Oral microbial shift: factors affecting the microbiome and prevention of oral disease. The J of Contemp Dent Pract. 2016;17:90-6. DOI: 10.5005/jp-journals-10024-1808.
Prabakaran M, Tamil Selvi S, Merinal S, Panneerselvam A. Effect of ozonation on pathogenic microbes. Adv in Appl Sci Res. 2012; 3(1): 299-30.
Rudolphi-Skórska E, Filek M, Zembala M. The effects of the structure and composition of the hydrophobic parts of phosphatidylcholine-containing systems on phosphatidylcholine oxidation by ozone. The J of Membr Biol. 2017; 250(5): 493-505. DOI: 10.1007/s00232-017-9976-8.
Bialoszewski D, Pietruczuk-Padzik A, Kalicinska A, Bocian E, Czajkowska M, Bukowska B, et al. Activity of ozonated water and ozone against Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Med Sci Monit. 2011; 17(11): 339-44. DOI: 10.3390/molecules25163601
Ferdes M, Zabava BS, Dinca MN, Paraschiv G. Effect of ozone treatment on three microbesl strains of drinking water. Proceedings 17th International Scientific Conference” Engineering for Rural Development”, 2018 23-25 May, Jelgava, Latvia. Latvia University of Life Sciences and Technologies; 2018.
Wani S, Maker JK, Thompson JR, Barnes J, Singleton I. Effect of ozone treatment on inactivation of escherichia coli and listeria sp. on spinach. Agricult. 2015; 5(2) :155-69. DOI: 10.3390/agriculture5020155
DOI: https://doi.org/10.24198/pjdrs.v5i2.33287
Refbacks
- There are currently no refbacks.
Statistik Pengunjung
Padjadjaran Journal of Dental Researchers and Students dilisensikan di bawah Creative Commons Attribution 4.0 International License