Effect of mixed water and methanol solvents ratio on the CaCO3 characteristics via fine bubble diffuser as a dental biomaterial

Renny Febrida, Muhammad Farhan Ramadhan, Elin Karlina, Niekla Survia Andiesta

Abstract


ABSTRACT

Introduction: The application of calcium carbonate in dental biomaterial depends on the charcateristics after the synthesis process. This study aims to determine the effect of the ratio of methanol and water on the characteristics of the CaCo3 produced through the fine bubble diffuser method. Methods: Synthesis of calcium carbonate by CO2 carbonation method using fine bubble diffuser to produce fine CO2 bubbles (bubble size range 100-500 nm). The Ca(OH)2 precursor was dissolved in various ratios of water and methanol mixtures, namely: 25% water 75% methanol, 20% water 80% methanol, 15% water 85% methanol, 10% water 90% methanol, 5% water 95% methanol, and 100% methanol. The suspension was carbonated using CO2 fine bubbles for 2 hours to produce CaCO3 powder. The resulting calcium carbonate powder was tested with FTIR (Fourier Transform Infra Red), PSA (Particle Size Analyzer), and Zeta-Potential. Results: The FTIR test obtained the wave numbers of calcite (712 cm-1), vaterite (744, 873, 874, and 875 cm-1) and aragonite (848, 849, and 854 cm-1) phases in the six variations of the solvent used. The PSA test showed that the particle size produced was submicron with the smallest size being 191.1 nm and the largest being 576.2 nm. The ZetaPotential test showed that the particles were relatively stable in solution with a Zeta-Potential value range of -15.1 mV to -20.8 mV and particles with moderate stability -21.2 mV to -25.1 mV. Conclusion: The addition of the organic solvent methanol to water increases the solubility of CaOH and increases the formation of the vaterite phase. Increasing the amount of water decreases the amount of vaterite phase, increasing the particle size and zeta potential value. but the addition of 15% water decreases the particle size of CaCO3

KEY WORDS

CaCO3, fine bubble diffuser, FTIR, PSA, zeta potential

Pengaruh perbandingan campuran pelarut air dan metanol terhadap karakteristik CaCO3 melalui metode fine bubble diffuser sebagai biomaterial kedokteran gigi

ABSTRAK

Pendahuluan: Kalsium karbonat (CaCO3) merupakan salah satu sumber kalsium yang umum digunakan di bidang biomaterial kedokteran gigi. Aplikasi kalsium karbonat tergantung dari fasa dan ukuran partikelnya. Penelitian ini bertujuan untuk mengetahui pengaruh perbandingan metanol dan air terhadap karakteristik CaCO3 yang dihasilkan melalui metode fine bubble diffuser. Metode: Prekursor Ca(OH)2 dilarutkan dengan berbagai variasi campuran pelarut air dan metanol, yaitu: 25% air 75% metanol, 20% air 80% metanol, 15% air 85% metanol, 10% air 90% metanol, 5% air 95% metanol, dan 100% metanol. Suspensi Ca(OH)2 dikarbonasi menggunakan gelembung halus CO2 selama 2 jam untuk menghasilkan bubuk CaCO3. Bubuk CaCO3 yang dihasilkan diuji dengan FTIR (Fourier Transform Infra Red), PSA (Particle Size Analyzer), dan ZetaPotential. Hasil: Uji FTIR didapatkan bilangan gelombang fasa kalsit (712 cm-1 ), vaterit (744, 873, 874, dan 875 cm-1 ) dan aragonit (848, 849, dan 854 cm-1 ) pada keenam variasi pelarut yang digunakan. Uji PSA didapatkan ukuran partikel terkecil 191,1 nm dan terbesar 576,2 nm. Partikel relatif stabil dalam larutan berdasarkan Uji Zeta-Potential (-15,1 mV sampai -17,8 mV) dan stabilitas moderat (-20,8 mV sampai -25,1 mV). Simpulan: Penambahan pelarut organik methanol pada pelarut air meningkatkan kelarutan CaOH dan meningkatkan pembentukan fasa vaterite. peningkatan jumlah air menurunkan jumlah fasa vaterite, meningkatkan ukuran partikel dan nilai zeta potensial. namun pada penambahan 15% air dan seterusnya menurunkan ukuran partikel CaCO3.

 KATA KUNCI

CaCO3, fine bubble diffuser, FTIR, PSA, zeta potential


Keywords


Kalsium karbonat, fine bubble, FTIR, PSA, zeta potensial

Full Text:

PDF

References


REFERENCES

Dizaj SM, Barzegar-Jalali M, Hossein Zarrintan M, Adibkia K, Lotfipour F. Calcium carbonate nanoparticles; Potential in bone and tooth disorders. Pharm Sci. 2015;20(4):175–82.

Tram NXT. Synthesis and characterization of calcite nano-particle derived from cockle shell for clinical application. ASEAN Eng J. 2020;10(1):49–54.

Salomão R, Costa LMM, Olyveira GM de. Precipitated Calcium Carbonate Nano-Microparticles: Applications in Drug Delivery. Adv Tissue Eng Regen Med Open Access. 2017;3(2):336–40.

Febrida R, Cahyanto A, Herda E, Muthukanan V, Djustiana N, Faizal F, et al. Synthesis and characterization of porous caco3 vaterite particles by simple solution method. Materials (Basel). 2021;14(16).

Haryona D, Djusmaini D, Ramli. Pengaruh Variasi Temperatur Kalsinasi Terhadap Karakteristik Kalsium Karbonat (Caco3) Dalam Cangkang Keong Sawah (Pila Ampullacea) Yang Terdapat Di Kabupaten Pasaman Haryona. Pillar Phys. 2015;6:17–24.

Kardiman, Widianto E, Bayuseno AP, Muryanto S. Analisis pertumbuhan fasa kerak kalsium karbonat (CaCO3) akibat penambahan asam tartrat (C4H6O6) sebagai aditif. Barom J Ilmu Dan Apl Tek. 2017;2(1):8–11.

Lewis R, Dwyer-Joyce RS. Interactions between toothbrush and toothpaste particles during simulated abrasive cleaning. Proc Inst Mech Eng Part J J Eng Tribol. 2006;220(8):755–65.

Habte L, Khan MD, Shiferaw N, Farooq A, Lee M hye, Jung S ho, et al. Synthesis, characterization and mechanism study of green aragonite crystals fromwaste biomaterials as calcium supplement. Sustain. 2020;12(12):1–10.

Mohd Abd Ghafar SL, Hussein MZ, Rukayadi Y, Zakaria MZAB. Surface-functionalized cockle shell-based calcium carbonate aragonite polymorph as a drug nanocarrier. Nanotechnol Sci Appl. 2017;10:79–94.

Jimoh OA, Ariffin KS, Hussin H Bin, Temitope AE. Synthesis of precipitated calcium carbonate: a review. Carbonates and Evaporites. 2018;33(2):331–46.

Ramakrishna C, Thenepalli T, Ahn JW. Evaluation of various synthesis methods for calcite-precipitated calcium carbonate (PCC) formation. Korean Chem Eng Res. 2017;55(3):279–86.

Boyjoo Y, Pareek VK, Liu J. Synthesis of micro and nano-sized calcium carbonate particles and their applications. J Mater Chem A [Internet]. 2014;2(35):14270–88. Available from: http://dx.doi.org/10.1039/C4TA02070G

Ali S A. Solvent Effect on the Thermodynamic Parameters of Ca(OH)2 by Conductivity Method. J Phys Chem Biophys. 2012;02(03):2–5.

Ali S, Ali S A. Determination of Thermodynamic Parameters from the Dissolution of Calcium Hydroxide in Mixed Solvent Systems by pH-Metric Method. J Phys Chem Biophys. 2013;03(02):3–8.

Wardhani S, Prasetia F, Khunur MM, Purwonugroho D, Prananto YP. Effect of CO2 flow rate and carbonation temperature in the synthesis of crystalline precipitated calcium carbonate (PCC) from limestone. Indones J Chem. 2018;18(4):573–9.

Muljani S, Saputra EA, Sumada K. Transformation of Calcium Carbonate Polymorph From Various Type of Shells by Carbonation Methods. Reaktor. 2021;21(1):27–34.

Yin P. IR - Spectroscopic Investigations of the Kinetics of Calcium Carbonate Precipitation. 2016;21–3.

Gopi S, Subramanian VK, Palanisamy K. Aragonite-calcite-vaterite: A temperature influenced sequential polymorphic transformation of CaCO3 in the presence of DTPA. Mater Res Bull [Internet]. 2013;48(5):1906–12. Available from: http://dx.doi.org/10.1016/j.materresbull.2013.01.048

Tas AC. Monodisperse calcium carbonate microtablets forming at 70°C in prerefrigerated CaCl2-Gelatin-Urea solutions. Int J Appl Ceram Technol. 2009;6(1):53–9.

Sun R, Willhammar T, Svensson Grape E, Strømme M, Cheung O. Mesoscale Transformation of Amorphous Calcium Carbonate to Porous Vaterite Microparticles with Morphology Control. Cryst Growth Des. 2019;19(9):5075–87.

Prof. Dr. Dachriyanus. Analisis Struktur Senyawa Organik Secara Spektroskopi. 2004.

Wong NA, Uchida N V., Dissanayake TU, Patel M, Iqbal M, Woehl TJ. Detection and Sizing of Submicron Particles in Biologics With Interferometric Scattering Microscopy. J Pharm Sci [Internet]. 2020;109(1):881–90. Available from: https://doi.org/10.1016/j.xphs.2019.05.003

Zhang W, Tian Y, Hu X, He S, Niu Q, Chen C, et al. Light-Scattering Sizing of Single Submicron Particles by High-Sensitivity Flow Cytometry. Anal Chem. 2018;90(21):12768–75.

Cho JS, Lee JC, Rhee SH. Effect of precursor concentration and spray pyrolysis temperature upon hydroxyapatite particle size and density. J Biomed Mater Res - Part B Appl Biomater. 2016;104(2):422–30.

Faza Y, Djustiana N, Cahyanto A, Joni IM, Usri K. Nilai pH hidrolisis pada teknik sol-gel terhadap ukuran dan zeta potensial partikel keramik mullite sebagai bahan pengisi komposit kedokteran gigi. Padjadjaran J Dent Res Students. 2017;1(2):90.

Anisja DH, Indrani DJ, Herda E. The effect of brushing with nano calcium carbonate and calcium carbonate toothpaste on the surface roughness of nano-ionomer. J Phys Conf Ser. 2017;884:012058.

Detara M, Triaminingsih S, Irawan B. Effects of nano calcium carbonate and siwak toothpaste on demineralized enamel surface roughness. J Phys Conf Ser. 2018;1073(3).

Sali S. Natural Calcium Carbonate For Biomedical Applications Natural Calcium Carbonate For Biomedical Applications A Thesis Submitted In Partial Fulfilment For The Degree Of Master Of Technology ( Integrated ) In Submitted By Sonali Sudhir Sali Under The Guidanc. 2016;(July).




DOI: https://doi.org/10.24198/pjdrs.v7i1.40418

Refbacks

  • There are currently no refbacks.


       

      

  

Statistik Pengunjung

Creative Commons License
Padjadjaran Journal of Dental Researchers and Students dilisensikan di bawah Creative Commons Attribution 4.0 International License