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ABSTRACT 

 
Soil color is a crucial property in soil fertility assessment and monitoring. However, the subjective nature of the Munsell Soil 
Color Chart (MSCC) can lead to uncertainty in the analysis. To address this issue, a study was conducted to develop a soil 
color classification model from smartphone digital imagery based on color analysis and MSCC. The study involved taking 26 
soil samples from various soil types and locations in the Special Region of Yogyakarta, Indonesia. Digital images of the soil 
were taken through a smartphone camera and compared with observations using MSCC to compare color differences (ΔE) 
based on Lab values. Soil images obtained from indoor studio conditions and calibration using spydercheckr in indoor and 
outdoor conditions are compared with MSCC and Chromameter values. The L*a*b color space was found to be superior to 
RGB for predicting and detecting small differences in color. The study also found that the Munsell soil color chart (MSCC) had 
a lower color difference than the chromameter in all lighting conditions, indicating that the MSCC or visual assessment can 
better detect the main soil color or soil matrix, while chromameter readings may have errors due to soil impurities. 
 
Keywords: color difference (∆E); L*a*b; RGB; image processing. 
 

 
ABSTRAK 

 
Warna tanah merupakan sifat penting dalam penilaian dan pemantauan kesuburan tanah. Namun, subyektifitas pengamat 
menggunakan Munsell Soil Color Chart (MSCC) dapat menyebabkan ketidakpastian dalam analisis. Untuk mengatasi 
masalah ini, penelitian dilakukan untuk mengembangkan model klasifikasi warna tanah dari citra digital smartphone 
berdasarkan analisis warna dan MSCC. Penelitian ini dilakukan dengan mengambil 26 sampel dari berbagai jenis tanah dan 
lokasi di Daerah Istimewa Yogyakarta, Indonesia. Citra digital tanah diambil melalui kamera smartphone dan dibandingkan 
dengan hasil pengamatan menggunakan MSCC untuk membandingkan perbedaan warna (ΔE) berdasarkan nilai Lab. Citra 
tanah yang diperoleh dari kondisi studio dalam ruangan dan kalibrasi menggunakan spydercheckr pada kondisi indoor dan 
outdoor dibandingkan dengan nilai MSCC dan Chromameter. Nilai L*a*b ditemukan lebih unggul daripada RGB dalam 
memprediksi dan mendeteksi perbedaan warna. Studi ini juga menemukan bahwa bagan warna tanah Munsell memiliki 
perbedaan warna yang lebih rendah daripada chromameter pada semua kondisi pencahayaan, yang mengindikasikan bahwa 
MSCC atau penilaian visual dapat mendeteksi warna tanah utama atau matriks tanah dengan lebih baik, sementara 
pembacaan chromameter dimungkinkan memiliki kesalahan cukup besar akibat adanya pengotor tanah. 
 
Kata Kunci: perbedaan warna (∆E); L*a*b; RGB; pemrosesan gambar 
 

 
INTRODUCTION 

 
Pedology is a fundamental aspect of soil science that 

focuses on examining the chemical and physical 
characteristics of soils, as well as the processes involved in 
their formation, distribution, morphology, and categorization. 
Soil color is one of the characteristics that can provide this 
information. Precisely assessing soil color is crucial since it 
yields vital data for soil scientists (Liu et al., 2020; Pegalajar 
et al., 2018, 2020, 2023). Soil color can provide valuable 
insights into soil development, composition, age of soil and 
rock surfaces, and variables that restrict plant growth. Hence, 
soil color serves as a significant soil indicator and attribute 
that can be employed to characterize, categorize, and 
distinguish soils (Fan et al., 2017; Pegalajar et al., 2018, 
2023; Priandana et al., 2014). Furthermore, soil color plays a 
crucial role in determining a range of soil activities and 
conditions, including oxidation-reduction processes, iron 

solubility, organic matter content, soil development, and the 
formation of distinct soil materials like concretions, nodules, 
plintites, and horizons.  

An frequently employed method for analyzing soil color is 
to utilize the Munsell soil color chart, also known as the 
Munsell Soil Color Chart (MSCC). The need for soil data in 
several fields, such as precision agriculture and dynamic 
environmental monitoring, is driving the advancement of soil 
sensors that can provide more accurate information, 
including data on soil color. The utilization of MSCC is 
prevalent due to its relative simplicity, as it solely involves a 
qualitative comparison of soil color in the field using MSCC 
(Fan et al., 2017; Pegalajar et al., 2023; Priandana et al., 
2014). The Munsell chart comprises 238 standardized color 
rectangular pieces (Pegalajar et al., 2018, 2023), organized 
based on three coordinates: hue (H), Value or brightness 
level (V), and Chroma or color intensity (C) (Liu et al., 2020; 
Pegalajar et al., 2023; Sinclair et al., 2024). 
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The primary issue that has arisen thus far is the ambiguity 
resulting from the subjectivity of the observer (Bloch et al., 
2021; Fan et al., 2017; Milotta et al., 2020; Pegalajar et al., 
2023; Priandana et al., 2014). This issue is worsened by the 
extensive range of hues in MSCC, some of which bear 
resemblances. For instance, there are similarities between 
2.5YR 8/8, 7.5YR 8/8, and 10YR 8/8, all of which have a 
tendency to appear yellow. Alternatively, in low-light soil 
circumstances, it becomes challenging to discern the soil 
color due to the prevalence of dark hues. Sánchez-Marañón 
et al., (2005) identified a problem related to the high 
variability observed in MSCC (Munsell Soil Color Chart) 
measurements based on CIELAB hab, L*, and C*ab 
analysis. This variability arises from differences in 
manufacturers, editions, and usage levels, particularly in 
terms of hue, value, and chroma values. The variations can 
arise from disparities in printing techniques and/or the 
gradual loss of color intensity. Sánchez-Marañón et al., 
(2011) also discuss how sunlight impacts the description of 
soil color, which is related to brightness. About 79% of the 
soils had several Munsell notations as a result of variations 
in sunshine, in addition 45% of soil displayed a stronger 
reddish or yellowish hue in daylight compared to reference 
light. Kirillova et al., (2015) further explained that the Munsell 
System is less accurate in assessing the role of pigments 
present in soil color. 

Various studies on soil color analysis employ different 
techniques, including decision tree (Gozukara et al., 2021; X. 
Zhang et al., 2018), random forest (Liu et al., 2020; Mancini 
et al., 2020), K-nearest neighbor (Marqués-Mateu et al., 
2018; Priandana et al., 2014; Y. Zhang & Hartemink, 2019), 
fuzzy systems (Pegalajar et al., 2018, 2020; Zhu et al., 2010), 
artificial neural networks (Pegalajar et al., 2018, 2020), and 
machine learning (Mancini et al., 2020). Nevertheless, the 
majority of investigations are carried out within controlled 
environmental settings and employ advanced equipment. 
Various techniques utilizing smartphone cameras have been 
suggested to address this issue. For instance, Gómez-
Robledo et al. (2013) employed a mobile phone camera to 
quantify soil color. The findings demonstrated that the utilized 
model exhibited comparable precision to some prior 
investigations that utilized specialist instruments in controlled 
environmental settings. Utilizing suitable techniques in 
smartphone digital image processing may produce a high 
level of precision. These techniques involve the conversion 
of RGB values into XYZ space and HVC (Han et al., 2016)  
or L*a*b color space (Kirillova et al., 2015). Another instance 
can be observed in the study conducted by Han et al., (2016) 
and Pegalajar et al., (2023), where the researchers 
categorize soil using color sensors in smartphone 
photographs. Issues undeniably accompany the utilization of 
photos produced by mobile phones. The primary issue lies in 
the fact that the straight conversion of RGB values typically 
disregards camera sensitivity and image quality. 
Consequently, the resulting estimated value will exhibit a 
significant range within the same sample. Hence, it is 
necessary to use referencing, including self-referencing and 
non-self-referencing methods (such as using a referencing 
board), to prepare the image for subsequent processing 
(Souza et al., 2018). 

Due to the diverse range of mineralogical composition 
and physical and chemical properties of soil, it is necessary 
for research to utilize spectral samples that accurately reflect 
the variety of soil (Costa et al., 2020). A study conducted by 
Marqués-Mateu et al., (2018) examined color consistency 
and measured soil color in a controlled laboratory setting. 
However, the study demonstrated that the use of Munsell 
charts tended to provide reasonably correct Hue, although 
Values and Chroma produced greater values than the real 

soil color. Moreover, a study conducted by (Fan et al., 2017) 
demonstrated the feasibility of analyzing smartphone 
photographs captured in the field using grey cards. The study 
also demonstrated the potential of employing smartphone 
photos for soil color assessment using the color difference 
(ΔE) method. Therefore, the objective of this study was to 
introduce a more objective approach to soil color 
identification through the calculation of color differences. 
These differences are intended to compare smartphone 
image data obtained under different conditions (indoor 
studio, indoor with SpyderCheckr, and outdoor with 
SpyderCheckr) with the ground truth provided by the MSCC 
or NH310 Chromameter. 
 
 
METHODOLOGY 
 
Soil sampling and preparation 

A total of 26 soil samples were taken randomly by 
considering soil classification. Soil classification was based 
on geospatial information data from Regional Development 
Planning Agency of Yogyakarta Special Region 
(http://geoportal.jogjaprov.go.id). The locations of all soil 
collections are shown in Figure 1. In this study, we employed 
an approach where each soil sample represented by a single 
point was considered a distinct entity. This decision was 
made considering that variations in soil color at different 
points may yield different outcomes.  

Alluvial soil is formed from young sediment deposits. 
Cambisol soil is also newly developed soil without significant 
clay content increase in the subsoil layer. Grumusol soil, rich 
in aggregates, features a brittle structure formed from 
organic and mineral materials. It typically exhibits excellent 
drainage properties and is conducive to healthy plant growth. 
Found in widespread areas with tropical and subtropical 
climates, often witness soil shrinkage and cracking during the 
dry season, followed by swelling and high plasticity during 
the rainy season. Latosol soil evolves from volcanic material 
with clay content exceeding 40% and base saturation less 
than 50%. Mediterranean soil exhibits brown to reddish soil 
color with base saturation exceeding 50%. Meanwhile, 
regosol soil has relatively coarse texture with sand content 
exceeding 60% (Gunawan et al., 2020; Hall et al., 1983). 

In order to ensure precise soil analysis, soil samples were 
taken from the top layer, known as the topsoil, at a depth of 
0-20 or 30 cm. The identification of the topsoil layer was 
based on the visual characteristics of the soil and its 
morphology. Subsequently, the soil was carefully cleared of 
any twigs, stones, and other debris. The sample was 
collected in the morning to afternoon under sunny conditions, 
without any recent rainfall. This would facilitate the soil 
preparation process and result in the homogen natural color 
of the soil matrix. The soil was subjected to air-drying for a 
period of 10-21 days, which varied based on the soil's 
condition, subsequent to the sample process. After being air-
dried, the soil was sifted through a 2 mm and 0.5 mm sieve 
to separate it into three sizes: 0.5 mm, 2 mm, and larger 
aggregates. The soil with a particle size of 2 mm was utilized 
for obtaining digital images and for soil texture analysis. The 
soil with a particle size of 0.5 mm was employed for analyzing 
organic matter content. The soil in disturbed aggregate form 
was utilized to obtain soil color data using MSCC values. 

 
Digital image acquisition, processing, and analysis 

To obtain smartphone digital image data, the soil is 
placed in a petri dish and a digital image is taken with a 
smartphone Vivo V23e. To ensure the validity of soil color, 
we sampled by identifying the dominant color within diverse 
areas on the petri dish. The sampling area varied depending 
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on the level of color homogeneity within the area. This 
approach aimed to minimize bias and ensure consistency in 
soil color sampling. Aggregate soil is used for color 
classification assessment on MSCC, which is then converted 
into RGB form. The smartphone camera specifications used 
are using 64 MP, aperture value f/1.8, focal length 26mm. 
The image from the smartphone camera is then extracted 
using ImageJ software, an open-source image processing 
software to obtain RGB values (Schneider et al., 2012). Then 
after that the RGB value is converted to the L*a*b color space 
value. Research by Kirillova et al., (2015) showed that 
conversion from the Munsell system to the CIE-L*a*b* 
system significantly improved the color character due to Fe 

pigments. Since Munsell is a subjective assessment that 
heavily relies on the observer, utilizing an objective tool like 
a chromameter for comparing data obtained with images 
generated by smartphones would result in a much more 
accurate assessment. Thus, we also collected soil color data 
using the NH310 chromameter (3NH, Shenzhen Threenh 
Technology Co., Ltd, China). Color extraction using the 
Nh310 chromameter was carried out by placing soil samples 
that had been covered with thin plastic on the chromameter 
sensor. The use of thin plastic is intended so that the color 
obtained can be accurate without disturbing the 
chromameter sensor. The workflow of this research is 
illustrated in Figure 2.  

 

 
Figure 1. Soil sampling location in Yogyakarta Special Region 

 
Table 1. The arrangement of image acquisition 
 

Settings 
Outdoor with Spydercheckr 

calibration (OC) 
Indoor with spydercheckr 

calibration (IC) 
Indoor studio (IS) 

Camera height 50 cm 72 cm 40 cm 

White balance Sunshine Sunshine Auto 

ISO 320 100 Auto 

Shutter speed 1/4000 1/10 Auto 

Zoom 1 x 2 x 2 x 
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Soil sampling

Soil preparation

Image acquisition

Data pre-processing

Calculate color 

difference

Euclidean distance CIELAB1976

Compare and 

analysis

Based on soil classification

• Air drying 10-21 days

• ϴ 0.5 mm, 2 mm, and bulk

Indoor studio

Indoor with spyderchecktr

Outdoor with spydercheckr

Munsell Soil Color Chart

NH310 Chromameter

• RGB value

• L*a*b color space value

 
 

Figure 2. Research flow 

 

 
Figure 3. Photograph of the 26 soil samples utilized in the research 
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The board referencing method utilizes the SpyderCheckr 
48 (Datacolor, USA), a standardized tool widely employed in 
color management within digital imaging. The SpyderCheckr 
48 comprises 48 color patches with known spectral 
reflectance values, facilitating the calibration and profiling of 
digital imaging devices to ensure accurate and consistent 
color reproduction. This tool is commonly employed in 
various fields, including photography, graphic design, and 
scientific imaging, to maintain fidelity in color representation 
across different devices and environments (Belosokhov et 
al., 2022; Ebner et al., 2021; Moore et al., 2021). Color 
calibration is done by applying the color calibration matrix 
obtained from Spydercheckr color parameters. Spydercheckr 
used to calibrate the color parameters of images generated 
from smartphones, which are taken with indoor and outdoor 
scenarios at the same time (morning at 08.00-10.00, sunny 
condition). While the indoor studio employs a mini studio with 
controlled luminescence, the studio lighting is regulated to 
ensure consistent measurement standards across all soil 
types. The color differences are aimed at comparing the data 
generated from smartphone images under various conditions 
(indoor studio, indoor with SpyderCheckr, and outdoor with 
SpyderCheckr) with the ground truth (MSCC or NH310 
Chromameter). Several studies employ color difference (∆E) 
in determining the variance between two sets of image data 
(Mancini et al., 2020; Nodi et al., 2023). Color difference (∆E) 
was measured using the Euclidean Distance (Equation 1) 
and CIE-LAB1976 (Equation 2) calculations. 

∆𝐸 = √∆𝑅2 +  ∆𝐺2 + ∆𝑅𝐵2 
(1) 

∆𝐸𝐿∗𝑎∗𝑏∗ = √(∆𝐿∗)2 +  (∆𝑎∗)2 + (∆𝑏∗)2 (2) 

 
L*a*b color space is considered superior to RGB, hence, 
while Euclidean Distance based on RGB values is simpler, 
conversion is necessary to ensure better accuracy of the 
obtained values.  
 
 
RESULTS AND DISCUSSION 
 

Several efforts have been made to quantitatively improve 
the accuracy and precision of soil color. These efforts can be 
classified into three. First, use of a special device to detect 
soil color. This method has constraints on the availability and 
cost of tools or devices that are relatively expensive 
compared to the use of the commonly used MSCC. Second, 

the use of digital images taken using smartphones or other 
devices (such as spectrophotometers, colorimeters, digital 
cameras with color analysis software, and hyperspectral 
imaging devices) to classify colors. This method, especially 
the use of smartphones, is considered a straightforward 
approach for analyzing soil color, suitable for general use 
with accessible devices such as smartphones, enabling 
broader application. Currently, researchers are more inclined 
to develop this method as it is more feasible for 
implementation. This method can be done using direct or 
indirect methods. The direct method means taking images 
that are processed with an application on a smartphone, 
while the indirect method is through image processing that is 
separate from the smartphone. However, this approach has 
limitations due to variations in screen conditions, brightness 
settings, and color gamut production. Therefore, steps are 
necessary to mitigate the impact of variability in color 
analysis, which includes device calibration, standardizing 
environmental conditions, integrating internal controls, and 
utilizing statistical analysis to enhance result consistency and 
accuracy (Gómez-Robledo et al., 2013; Han et al., 2016; 
Nodi et al., 2023; Pegalajar et al., 2020, 2023; Priandana et 
al., 2014; Sinclair et al., 2024; Souza et al., 2018; X. Zhang 
et al., 2018). 

Sampling results showed that the 26 soils taken had a 
fairly diverse color range from gray-brown to blackish (Figure 
3). There are six types of soils found in the research area, 
namely alluvials, grumusols, cambisols, latosols, 
Mediterranean, and regosols. Analysis of soil color using the 
munsell soil color chart (MSCC) showed that observations 
were not made easily due to the very specific color and 
abundant color variety of the MSCC. Therefore, a better 
method of measuring soil color is needed.  

The color difference (∆E) value indicates how much the 
colors of the two data differ. The lower the value, the smaller 
the difference. The Euclidean Distance method compares 
the RGB color space from the camera image with benchmark 
data, which includes the Munsell Soil Color Chart (MSCC) or 
Chromameter. Calculation of color difference (∆E) using the 
Euclidean Distance method between indoor studio (IS) 
images and MSCC showed similar than other comparisons, 
MSCC with indoor or outdoor using spydercheckr calibration 
(Figure 4). Based on soil type, Mediterranean shows lower 
values, ranging from 24.89 to 37.90 depending on the image 
source used as a comparison to MSCC, compared to other 
soil types.

 
Figure 4. Color difference RGB-Euclidean Distance based on soil classification using MSCC as ground truth. Bars indicate 

standard error. Remarks: IC: indoor with spydercheckr calibration, OC: outdoor with spydercheckr calibration, IS: 
indoor with studio luminescence 
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 The use of chromameter as ground truth shows a value 
that is much different from the results obtained using a 
smartphone camera. In the calculation of the color difference 
between the chromameter and the indoor image through 
calibration, values of 69.33 and 74.37 were obtained for 
regosol and grumusol soils, respectively, while other soils 
had color difference values of more than 85 (Figure 5). In 
outdoor natural lighting, after calibration, the color difference 
values were still high, ranging from 71.30 to 105.4. While in 

isolated light conditions through the indoor studio showed 
values ranging from 71.37-95.45. This indicated that the use 
of Euclidean distance using the RGB color space is not able 
to accurately assess the difference in color produced from 
the camera and the ground truth used. Nodi et al., (2023) 
elucidated that employing the RGB color model and 
Euclidean distance yielded an average prediction rank of 82-
101 for the Samsung S10 and 40-80 for the Google Pixel 5. 
  

 

 
Figure 5. Color difference RGB-Euclidean Distance based on soil classification using Nh3 Chromameter as ground truth. 

Bars indicate standard error. Remarks: IC: indoor with spydercheckr calibration, OC: outdoor with spydercheckr 
calibration, IS: indoor with studio luminescence 

 
 

 
Figure 6. Color difference CIELAB1976 based on soil classification using MSCC as ground truth. Bars indicate standard 

error. Remarks: IC: indoor with spydercheckr calibration, OC: outdoor with spydercheckr calibration, IS: indoor with 
studio luminescence 

  

 
Figure 7. Color difference CIELAB1976 based on soil classification using Nh3 Chromameter as ground truth. Bars indicate 

standard error. Remarks: IC: indoor with spydercheckr calibration, OC: outdoor with spydercheckr calibration, IS: 
indoor with studio luminescence 
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The CIELAB 1976 using L*a*b color space is preferred over 
the RGB value for several reasons. Unlike the RGB color 
model, which is based on the capabilities of electronic visual 
displays, CIELAB is designed to approximate human vision. 
The L* component in CIELAB closely matches human 
perception of lightness, making it more suitable for 
representing how humans perceive color (Azetsu & Suetake, 
2021; Connolly & Fleiss, 1997; M. R. Luo, 2014). Additionally, 
CIELAB is intended to be a perceptually uniform space, 
where a given numerical change corresponds to a similar 
perceived change in color. This makes it more effective for 
predicting and detecting small differences in color, which is 
particularly useful in industries where color accuracy is 
critical, such as in printing and manufacturing (Connolly & 
Fleiss, 1997; M. R. Luo, 2014). 
 The change from RGB to L*a*b color space showed a 
very significant change, that is, the color difference value 
becomes much lower. This demonstrates that the L*a*b color 
space is much better at color assessment than using RGB 
values. Mediterranean soils showed ∆E between MSCC and 
indoor images after calibration of 10.91, lower than 
grumusols (13.06), cambisols (15.25), or other soil types that 
have ∆E of more than 18 (Figure 6). In the comparison 
between MSCC and calibrated outdoor some soil types show 
higher values than indoor. Meanwhile, the comparison 
between MSCC and studio images showed lower values 
than others, ranging from 10.23-15.71 for all soils, except 
regosols which showed a value of 18.32.  
 The use of chromameter as ground truth shows fairly 
uniform values (Figure 7). Comparison with the calibrated 
indoor shows color differences ranging from 16.87-23.46. 
While comparison with calibrated outdoor shows values less 
than 20 in grumusols and regosols soils, while other soil 
types are more than 20. In comparison of chromameter with 
indoor studio lighting shows regosols, alluvials, and 
grumusols soils, respectively 17.18, 17.74, and 19.20. 
 This research showed that there was a superior use of 
the L*a*b color space compared to RGB based on the color 
difference value. In addition, this study also highlighted that 
the use of MSCC had a lower color difference than the 
chromameter in all lighting environment conditions despite 
being calibrated. This better used of munsell was 
unexpected, as munsell relies solely on visuals in color 
assessment, while chromameter read color directly 
quantitatively. This finding indicates that the use of MSCC or 
visually was able to detect better the main soil color or soil 
matrix. While chromameter readings may had errors due to 
the color of soil impurities. In general, the color of the soil 
matrix is often not uniform due to the presence of impurities, 
for example from the soil parent material. Some dark soils 
such as black, brown or reddish have bright or white 
impurities, whereas regosols that are quite light in color have 
darker impurities. Manual reading of the MSCC by an 
observer can easily distinguish between the soil matrix and 
the impurities.  
 Furthermore, the considerable color difference between 
the MSCC or chromameter and the soil image indicates the 
presence of impurities mixed with the soil due to the crushing 
of the soil to a smaller size. Soil crushing has the advantage 
of increasing the color homogeneity of the soil matrix, 
although this study shows a disadvantage, that is the soils 
taken have quite a lot of impurities, so that the crushing 
impurities will interfere with the reading of the digital image 
from the smartphone. The presence of soil impurities is a 
immense challenge, thus it is necessary to utilize artificial 
intelligence to distinguish between the soil matrix and soil 
impurities. 

CONCLUSION 
 
 The study's sampling results revealed a diverse color 
range in the 26 soils taken, highlighting the need for a better 
method of measuring soil color. The research demonstrated 
the superiority of the Lab color space over the RGB value, as 
it is more effective for predicting and detecting small 
differences in color. Additionally, the study found that the use 
of the Munsell soil color chart (MSCC) had a lower color 
difference than the chromameter in all lighting environment 
conditions, despite being calibrated. This unexpected finding 
indicates that the MSCC or visual assessment can better 
detect the main soil color or soil matrix, while chromameter 
readings may have errors due to soil impurities. The 
presence of soil impurities was identified as a significant 
challenge, necessitating the use of artificial intelligence to 
distinguish between the soil matrix and soil impurities. 
Overall, the study's findings emphasize the importance of 
accurate and precise soil color analysis, particularly in the 
presence of soil impurities. 
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