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ABSTRACT 

 
The enzymatic hydrolysis of starch from pineapple stem waste for maltodextrin production was successfully optimized using 
Response Surface Methodology (RSM). The study identified enzyme concentration and hydrolysis time as critical factors 
significantly influencing reducing sugar concentration and DE values. Under the optimal conditions (16 µL enzyme/30 gram of 
dry starch and 30 minutes hydrolysis time), the model predicted a reducing sugar concentration of 13.9%. However, the 
experimental validation produced an actual yield of 13.21%. The model RSM demonstrated a reliability level of 95.05% 
(moderately accurate), with deviations primarily due to experimental variability and model limitations. ANOVA analysis 
confirmed the model's validity with an R² value of 0.9873, while residual analyses supported its adequacy and predictive 
accuracy. The 3D surface response analysis highlighted the critical thresholds for optimizing reducing sugar production. This 
study provides a sustainable solution for valorizing pineapple stem waste into industrially valuable maltodextrin, supporting 
environmental conservation and the circular economy. Further studies are recommended to investigate the impact of enzyme 
characteristics, substrate pretreatment methods, and large-scale process validation to enhance the efficiency and commercial 
viability of maltodextrin production from pineapple stem waste. 
 
Keywords: Dextrose equivalent (DE); maltodextrin; pineapple stem waste; response surface methodology (rsm); starch 
hydrolysis 
 

 
ABSTRAK 

 
Hidrolisis enzimatis pati dari limbah bonggol nanas untuk produksi maltodekstrin telah berhasil dioptimasi menggunakan 
Metodologi Permukaan Respon (RSM). Penelitian ini mengidentifikasi bahwa konsentrasi enzim dan waktu hidrolisis 
merupakan faktor-faktor kritis yang berpengaruh signifikan terhadap konsentrasi gula pereduksi dan nilai Dextrose Equivalent 
(DE). Kondisi optimum diperoleh pada konsentrasi enzim sebesar 16 µL/30-gram pati kering dan waktu hidrolisis selama 30 
menit, dengan prediksi model menghasilkan kadar gula pereduksi sebesar 13.9%, sementara hasil aktual percobaan 
menunjukkan sebesar 13,21%. Model menunjukkan tingkat keandalan sebesar 95.04%, dengan deviasi yang terutama 
disebabkan oleh variabilitas eksperimen dan keterbatasan model. Analisis ANOVA mengonfirmasi validitas model dengan 
nilai R² sebesar 0.9873, dan analisis residual mendukung kecukupan serta akurasi prediktif model. Analisis respons 
permukaan 3D menunjukkan ambang kritis dalam optimasi produksi gula pereduksi. Secara keseluruhan, model RSM yang 
telah divalidasi ini memberikan pendekatan yang efektif untuk optimasi proses produksi maltodekstrin secara industri. Namun 
demikian, validasi eksperimen secara berkelanjutan tetap disarankan guna memastikan konsistensi dan meningkatkan 
reliabilitas prediktif model. 
. 
Kata kunci: Dextrose equivalent (DE); hidrolisis pati; limbah bonggol nanas; maltodekstrin; metodologi permukaan respon 
(RSM) 
 
 
INTRODUCTION 
 

Maltodextrin, a hydrolysis product of starch, is extensively 
utilized in the food, pharmaceutical, and chemical industries 
due to its desirable functional properties, including high 
solubility, mild sweetness, and efficacy as a filler in diverse 
applications (Cabeza et al., 2025). The production of 
maltodextrin necessitates meticulous control over starch 
hydrolysis to achieve a targeted Dextrose Equivalent (DE), 
which significantly influences its physicochemical properties 
and suitability for various industrial applications (Rosida et 
al., 2020). Currently, the most common starch sources for 
maltodextrin production include cassava, corn, potato, and 
rice starches, owing to their favorable hydrolysis properties 
(Vilpoux & Santos Silveira Junior, 2023). Given the 
increasing emphasis on sustainability and resource 

optimization, the valorization of agricultural waste has 
emerged as a promising strategy. Pineapple stem waste 
(PSW), an abundant agro-industrial by-product, offers 
significant potential as an alternative starch source. Its 
utilization not only addresses environmental concerns by 
reducing biomass waste but also creates economic 
opportunities through the generation of value-added 
products like maltodextrin (Paz-Arteaga et al., 2024). Despite 
the global focus on starch hydrolysis technologies, studies 
specifically targeting the conversion of PSW into maltodextrin 
remain scarce (Oonsivilai et al., 2017). Most existing 
research emphasizes starch sources like cassava, corn, and 
sago, leaving a substantial knowledge gap regarding the 
optimization of maltodextrin production from PSW. 
Addressing this gap is crucial for enhancing the resource 
efficiency and sustainability of agro-industrial systems. 
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Previous studies have highlighted the influence of 
enzyme concentration and hydrolysis time on DE values. 
Ahmad et al., (2018) demonstrated that hydrolyzing sago 
starch with 0.09% α-amylase at pH 5.0 and 100°C for 60–
240 minutes resulted in DE values ranging from 6.0 to 18.0, 
emphasizing the critical role of hydrolysis duration. Similarly, 
Nguyen et al., (2018) found that using an enzyme 
concentration of 0.15% at 95℃ for 120 minutes produced a 
DE value of 15.8, confirming the significant impact of enzyme 
dosage. However, the majority of previous optimization 
efforts have targeted broader hydrolysis efficiency rather 
than systematically achieving the precise DE range (18-20) 
required for maltodextrin production (Yolmeh & Jafari, 2017). 

In this study, Response Surface Methodology (RSM) was 
employed as an optimization tool to systematically determine 
the optimal enzyme concentration and hydrolysis duration to 
achieve maltodextrin within the DE range of 18–20. Unlike 
previous work that broadly optimized hydrolysis, this study 
focuses specifically on achieving targeted DE levels for 
industrial application (Joyjamras et al., 2022). pH and 
temperature were kept constant based on previous findings 
that optimal α-amylase activity occurs around pH 5.0–6.5 and 
95℃ (Veza et al., 2023). Accordingly, this research aims to 
develop a predictive mathematical model for the enzymatic 
hydrolysis of PSW starch, contributing to sustainable waste 
valorization, economic enhancement, and environmental 
conservation. 
 
 
METHODOLOGY 
 
Materials  

The primary raw materials used in this study were starch 
extracted from pineapple steam waste (PSW). Analytical-
grade chemicals included distilled water (aquades), 1 N 

sulfuric acid (H2SO4), acetyltrimethyl ammonium bromide 
(ADF), neutral detergent fiber (NDF) solutions comprising 
EDTA-2Na, Na2B4H2O7. 10H2O, sodium lauryl sulfate, and 
3,5-dinitrosalicylic acid (DNS) solution, which were prepared 
according to standard laboratory procedures (Wang et al., 
2019). 
 
Sample Preparation 

Starch was extracted from PSW. The extracted starch 
was dried using a blower oven at 60℃ for 12 h to ensure 
uniform moisture content, then ground to a 60-mesh of size. 
The prepared starch was subsequently stored at ±5℃ until 
analysis. 
 
Rapid Visco Analyzer (RVA) 

The amylographic properties of the starch were 
determined using an RVA-TecMaster (Perten Instruments, 
Australia) following standard procedure. Approximately 3.0 
grams of starch were suspended in 25 mL of distilled water 
to create a 10.32% (w/w, dry basis) suspension. The sample 
was initially mixed at 960 rpm for 10 seconds to ensure 
uniform dispersion, followed by mixing at 480 rpm during the 
subsequent heating and cooling cycle. This procedure aligns 
with the viscosity profile evaluation standards (Xu et al., 
2021). 
 
Starch Hydrolysis into Maltodextrin  

A starch slurry was prepared by dissolving 30 grams of 
dried pineapple stem starch in 100 mL of distilled water, 
followed by heating at 70℃ under constant stirring (30 rpm) 
using a magnetic stirrer to induce gelatinization. 
Subsequently, 0.5555 grams of calcium chloride dihydrate 
(CaCl₂.2H₂O) were added to the gelatinized starch solution. 
The pH of the mixture was then adjusted once to 6.5 using 

5N sodium hydroxide (NaOH), without further pH monitoring 
during hydrolysis. following pH adjustment, α-amylase 
TERMAMYL 120L was added at varying concentrations 
(Table 1), expressed in microliters per 30 grams of dry starch. 
TERMAMYL 120L has an enzymatic activity of 120 KNU per 
gram of product, where one KNU is defined as the amount of 
enzyme required to hydrolyze approximately 5.26 grams of 
starch per hour under standard conditions. Enzymatic 

hydrolysis was subsequently conducted at 100℃ for specific 
durations, with the final reaction volume consistently 
maintained at 100 mL across all treatments. 

Enzymatic activity was terminated by adding 8N 
hydrochloric acid until the pH reached 4.3. The final volume 
was adjusted to 100 mL with distilled water, homogenized, 
and centrifuged at 25℃, 4000 rpm for 20 minutes. The 
supernatant containing maltodextrin was dried using a Buchi 
Mini Spray Dryer B-290 (Buchi, Switzerland) with parameters 
set at an Tinlet = 180℃, Toutlet = 75℃, and an aspirator 
setting of 90% (Do et al., 2024). The resulting maltodextrin 
was frozen at -30℃ and stored until analysis. The Dextrose 
Equivalent (DE) was determined by quantifying reducing 
sugars using the 3,5-DNS method (Nurhadi et al., 2025). The 
DE value was calculated using the equation 1: 
 

DE =  
reducting sugar (g)

total dry samples (g)
 x 100% 

   

(1) 

Optimization using Response Surface Methodology 
(RSM) 

The Response Surface Methodology (RSM) with a 
Central Composite Design (CCD) was applied to evaluate 
the effects of these independent variables on reducing sugar 
(𝑦1). The CCD applied an alpha (α) value of 1.414, 
appropriate for rotatable designs with two independent 
variables. The design comprised 10 experimental points, 
including two replicates for the center point to ensure 
reproducibility. Data analysis was conducted using Analysis 
of Variance (ANOVA) to determine the significance of each 
factor and their interaction. The model's adequacy was 

evaluated through R2 values and lack-of-fit tests. 
Optimization results were visualized using response surface 
plots, and final model validation was conducted through 
experimental trials to confirm the model's predictive accuracy 
(Sitio et al., 2024). 

 
Table 1. Experimental conditions for starch hydrolysis 

treatments 
 

Run 
Enzyme concentration 
(µL/30 g of dry starch) 

(𝑋1) 

Hydrolysis time in 

minutes (𝑋2) 

1 8.0 30±3 

2 10.0 30±3 

3 4.8 60±3 

4 24.0 30±3 

5 27.0 60±3 

6 16.0 60±3 

7 16.0 60±3 

8 8.0 98±3 

9 16.0 105±3 

10 24.0 92±3 
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Statistical analysis 
All experiments were performed in triplicate and reported 

as the mean ± SD and the p-value at < 0.05 level of 
significance. The experimental data were analyzed using 
Design Expert® Software (Version 13.0.5.0, (Stat-Ease Inc., 
Minneapolis, MN, USA) and an analysis of variance 
(ANOVA). 
 
 
RESULTS AND DISCUSSION 
 
Characteristics of sample 

This study aimed to analyze the chemical characteristics 
of PSW as a raw material for maltodextrin production through 
enzymatic hydrolysis. The analysis results revealed a diverse 
chemical composition of PSW, consisting of moisture 
content, ash, starch, amylose, amylopectin, hemicellulose, 
cellulose, and lignin. These components significantly 
influence the efficiency of the conversion process into 
maltodextrin. 

The starch content obtained from the PSW was 
68.77%±0.226%. This percentage indicates that PSW holds 
promising potential as a starch source for maltodextrin 
production. However, this value is slightly lower than the 
findings of Chu et al. (2021), who reported a starch content 
of 77.78% ± 0.02%. This variation may be influenced by 
several factors, including pineapple variety, environmental 
conditions during plant growth, and processing methods. For 
instance, suboptimal drying or storage processes could 
degrade starch and reduce its final yield. Additionally, 
differences in grinding methods and separation techniques 
could also affect the starch content. Therefore, optimizing the 
raw material processing methods is crucial to ensuring the 
yield of starch (Collares et al., 2012). The measured moisture 
content was 3.85 ± 0.16%. This low moisture level has 
positive implications for the stability of the raw material, 
particularly in terms of storage and handling. Moisture levels 
below 10% are effective in preventing microbial growth that 
can spoil the material and extend its shelf life (Van der Veen 
et al., 2006). Furthermore, low moisture content facilitates 
the enzymatic hydrolysis process, as excessive moisture can 
reduce enzymatic efficiency. Thus, maintaining low moisture 
levels is essential to support the smooth production of 
maltodextrin. 

The ash content of the PSW was 0.42 ± 0.002% (db). This 
result aligns with (Nath et al., 2023), who reported an ash 
content of 0.40%, indicating consistency in raw material 
purity. Low ash content signifies minimal inorganic mineral 
presence, which is crucial for avoiding disruptions during 
enzymatic hydrolysis. High ash content can inhibit enzyme 
activity due to the presence of inorganic inhibitors (Zhao et 
al., 2023). Therefore, the low ash level in the pineapple core 
waste is a positive indicator for ensuring the smoothness and 
effectiveness of the starch-to-maltodextrin conversion 
process. In terms of starch composition, the amylose and 
amylopectin contents were 27.45% and 41.34%, 
respectively. This composition indicates that the starch is 
dominated by amylopectin, which has a branched and 
complex structure. Amylopectin requires a longer hydrolysis 
time compared to amylose due to its complex molecular 
arrangement (Novia et al., 2025). However, the substantial 
amylose content provides an advantage, as amylose is more 
easily hydrolyzed by α-amylase enzymes. Therefore, 
optimizing the hydrolysis time and enzyme concentration is 
necessary to maximize maltodextrin yield. Inefficient 
hydrolysis could result in a final product with a low degree of 
polymerization, deviating from the desired maltodextrin 
characteristics.  

 

Table 2. Characteristics of PSW as raw material 
 

No 
Analysis 
Criteria 

Percentage 
(dry basis) 

Reference 

1 
Moisture 
content 

3.85 ± 0.16% 
10,64% 

(Ospankulova 
et al., 2020)  

2 Ash content 
0.42 ± 

0.002% 

0,40 ± 0.00 
(Chu et al., 

2021) 

3 Starch content 
68.77 ± 
0.226%  

77.78 ± 
0,02% (Chu 
et al., 2021) 

4 Amylose 27.45% 
34,37% (Chu 
et al. 2021) 

5 Amylopectin  41.34% 
63,40% (Chu 
et al. 2021) 

6 Hemicellulose  10.23% Crude 
component 
21.6% (Chu 
et al. 2021) 

7 Cellulose 11.27%  

8 Lignin 2.56 

 
Table 3. Amylographic properties of PSW strach 
 

No 
Amylographic 

Property 
Temperature 

(℃) 
Viscosity (cP) 

1 Pasting point 90.22 2 

2 Peak viscosity 95.03 945 

3 Hold viscosity  82.64 539 

4 Breakdown - 406 

5 Setback - 413 

 
Additionally, the lignocellulose components-comprising 

hemicellulose, cellulose, and lignin—were measured at 
10.23%, 11.27%, and 2.56%, respectively. The relatively low 
lignin content is beneficial, as lignin is known to inhibit 
enzymatic activity during hydrolysis (Cai et al., 2023). Lignin 
is resistant to enzymatic degradation and can shield cellulose 
and hemicellulose, thereby reducing hydrolysis efficiency. 
Therefore, low lignin levels in PSW accelerate hydrolysis and 
enhance maltodextrin yield. Meanwhile, moderate levels of 
hemicellulose and cellulose can be processed using pre-
treatment methods, such as heating or enzymatic treatment, 
to break down their complex structures. These processes 
aim to increase starch availability and expedite enzymatic 
hydrolysis rates. 
 

Amylographic properties of PSW Starch 
The amylographic characteristics of PSW starch, as 

summarized in Table 3, provide critical insights into its 
suitability for enzymatic hydrolysis and maltodextrin 
production. As shown in Table 3, the elevated pasting point 
(90.22℃) suggests a compact granule architecture 
necessitating higher thermal input to achieve complete 
gelatinization, thereby modulating enzymatic accessibility 
and initial reaction kinetics (Campelo et al., 2020). This 
relatively high gelatinization temperature may imply 
increased energy consumption during industrial processing, 
which could impact production costs; however, it also confers 
enhanced thermal stability, potentially beneficial for 
processes requiring extended thermal treatment. The 
substantial peak viscosity (945 cP) reflects a pronounced 
water-binding capability, which facilitates efficient starch 
swelling and subsequent enzymatic degradation (Salimi et 
al., 2023). 
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Table 4. Effect of enzyme concentration and hydrolysis time 
 

Run (𝑋1) (𝑋2) 
Reducing Sugar 

(%) 
(DE) 

(%) RMS = 100𝑥
√∑ {

𝑦𝑖−𝑦𝑖
∗

𝑦𝑖
}

2
𝑛
𝑖−1

𝑛
 

1 8.0 30±3 4,7±0.03 11,42±0.06 

0,1964 

2 10.0 30±3 5,5±0.02 8,41±0.03 

3 4,8 60±3 6,2±0.03 15,02±0.07 

4 24.0 30±3 8,03±0.03 19,26±0.06 

5 27.0 60±3 11,2±0.00 26,03±0.37 

6 16.0 60±3 12,2±0.08 29,19±0.08 

7 16.0 60±3 12,3±0.08 29,53±0.08 

8 8.0 98±3 17,8±0.09 42,96±0.02 

9 16.0 105±3 19,8±0.03 47,73±0.06 

10 24.0 92±3 22,4±0.06 44,49±0.06 

*𝑋1 = Enzyme concentration (µL/30 g of dry starch); 𝑋2 =Hydrolysis time in minutes 
 
Table 5. The ANOVA analysis of the model prediction 
 

Source Sum of Squares df Mean Square F-value p-value 

 

Model 299.83 3 99.94 234.92 < 0.0001 significant 

A-konsentrasi enzim 85.91 1 85.91 201.95 < 0.0001 
 

B-waktu 193.92 1 193.92 455.81 < 0.0001 
 

AB 8.13 1 8.13 19.10 0.0047 
 

Residual 2.55 6 0.4254 
   

Lack of Fit 2.55 5 0.5095 101.90 0.0751 not significant 

Pure Error 0.0050 1 0.0050 
   

Cor Total 302.38 9 
    

R-squared 89,86      

 
In amylographic analysis, breakdown viscosity refers to 

the reduction in viscosity during high-temperature holding, 
reflecting the stability of starch granules under thermal and 
mechanical stresses (Dereje, 2021). The moderate 
breakdown viscosity (406 cP), also presented in Table 3, 
indicates partial granule disintegration under thermal and 
mechanical stresses, promoting enzymatic penetration and 
accelerating hydrolytic conversion (L. Zhang et al., 2024). 
Such fragmentation behavior may enhance the efficiency of 
spray-drying operations by facilitating the formation of fine 
and uniform droplets, thereby improving drying rates and 
powder quality. The setback viscosity of 413 cP (Table 3) 
reflects a significant retrogradation propensity in PSW starch 
(Vamadevan & Bertoft, 2018). Setback viscosity, defined as 
the increase in viscosity during cooling due to starch 
molecular reassociation (Dereje, 2021), indicates the 
tendency of amylose and amylopectin chains to realign and 
recrystallize. High setback values may adversely affect the 
solubility and smoothness of the final maltodextrin product. 
Therefore, controlling the extent of retrogradation through 
optimized hydrolysis conditions is crucial to producing 
maltodextrin with desirable physicochemical and functional 
attributes. 
 
Effect of Enzyme Concentration and Hydrolysis Time 

The physicochemical properties of PSW starch 
significantly influence enzymatic accessibility and hydrolysis 
kinetics (Lv et al., 2011). High starch content ensures a 
plentiful substrate supply for enzymatic attack. The amylose-
to-amylopectin ratio plays a crucial role: higher amylose 
levels retard hydrolysis due to their dense, crystalline 
structure, while elevated amylopectin promotes rapid  

 
enzymatic degradation through its amorphous and highly 
branched configuration (Shen et al., 2021). Moreover, non-
starch polysaccharides such as hemicellulose, cellulose, and 
lignin form physical barriers around starch granules, reducing 
enzymatic access and hydrolysis rates (H. Zhang et al., 
2022). Understanding these physicochemical characteristics 
provides a critical foundation for interpreting how enzyme 
concentration and hydrolysis time influence the efficiency of 
starch breakdown and the production of maltodextrin. 

The data presented in Table 4 clearly demonstrate the 
significant influence of enzyme concentration and hydrolysis 
time on the percentage of reducing sugars and Dextrose 
Equivalent (DE) during the enzymatic hydrolysis of PSW 
starch. This analysis underscores the interplay between 
these two critical variables and their combined impact on the 
efficiency of starch conversion into maltodextrin.  

Increasing both enzyme concentration and hydrolysis 
duration generally resulted in higher yields of reducing 
sugars and elevated DE values. At lower enzyme 
concentrations and shorter hydrolysis durations, the yields 
were markedly lower. At a hydrolysis time of 30 minutes, 
increasing the enzyme concentration from 8.0 µL to 24 µL led 
to a notable improvement in hydrolysis efficiency, as 
evidenced by an increase in reducing sugar yield from 4.7% 
to 8.03% and a rise in DE value from 11.42 to 19.26 
respectively. These findings support the general principle 
that elevating enzyme concentration enhances starch 
breakdown under fixed reaction durations. Similar 
observations were reported Serrano-Febles et al. (2025), 
who demonstrated that higher enzyme dosages significantly 
improve reducing sugar production and DE levels during 
enzymatic starch hydrolysis. 
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Optimization continued with extended hydrolysis times. 
The highest yield was recorded in Run 9, utilizing an enzyme 
concentration of 16 µL and a prolonged hydrolysis time of 
105 minutes, resulting in a reducing sugar percentage of 19.8 
± 0.026% and a DE value of 47.73 ± 0.06. These findings 
align with Sigüenza-Andrés et al. (2022), who emphasized 
that prolonging hydrolysis duration significantly promotes 
enzymatic breakdown of starch molecules, thereby 
increasing reducing sugar production and DE values. 
However, it is important to note that by definition, 
maltodextrins possess a DE value of less than 20, while 
products with DE values exceeding 20 are classified as syrup 
solids (Chavan et al., 2016). Therefore, in this study, a 
maximum DE threshold of 20 was established to align with 
industrial maltodextrin specifications. The response surface 
modeling was accordingly constrained to target conditions 
that maximize reducing sugar yield without surpassing a DE 
value of 20. This constraint ensures that the produced 
material retains the functional and regulatory characteristics 
of maltodextrin, rather than transitioning into syrup products. 
Furthermore, model adequacy was statistically confirmed by 
the Root Mean Square (%RMS) value of 0.1964, which is 
well below the acceptable threshold of 10%. A %RMS lower 
than 10% indicates high predictive accuracy and model 
validity in response surface methodology applications 
(Olabinjo, 2024). 

It is also important to note that excessively high enzyme 
concentrations may lead to potential substrate inhibition or 
aggregation effects, which could paradoxically reduce the 
hydrolysis efficiency (Gao et al., 2023). Enzyme crowding at 
high concentrations can hinder effective substrate binding 
and catalysis, emphasizing the need to optimize enzyme 
levels rather than indiscriminately increasing them. 
 
Analysis of the accuracy of the model using RSM  

Based on the results of the Analysis of Variance 
(ANOVA) presented in Table 5, the regression model 
demonstrated high significance, with an F-value of 234.92 
and a p-value of 0.0001. This indicates that the model is valid 
and effectively explains the relationship between the 
independent variables and the response variable. The 
enzyme concentration (X₁) had a significant effect on the 
outcome, with an F-value of 201.95 and a p-value of < 
0.0001. Meanwhile, hydrolysis time (X₂) exhibited a more 
dominant influence, with an F-value of 455.81and a p-value 
of less than 0.0001. These findings confirm that both factors 
play crucial roles in influencing the starch hydrolysis process, 
aligning with previous studies that emphasized the 
importance of controlling enzyme concentration and reaction 
time to enhance hydrolysis efficiency (Aderibigbe et al., 
2013). 

 

 
 
Figure 1. (a) Residual plot graph of reducing sugar 

concentration against predicted reducing sugar 
concentration, and (b) normal probability curve for 
the response of reducing sugar concentration. 

 
 
Figure 2. Surface graph of the reducing sugar concentration 

response (a) and 3D surface response curve of 
reducing sugar concentration. 

 
Additionally, the lack of fit analysis yielded a p-value of 

0.0751, which is not statistically significant at the 95% 
confidence level. This indicates that the model fits the 
experimental data adequately, with no meaningful deviation 
between the predicted and actual values. Moreover, the 
extremely low pure error (0.0050) reinforces the consistency 
and reliability of the experimental procedure. The coefficient 
of determination (R²) was 0.9873, suggesting that the model 
explains approximately 98.73% of the variability in reducing 
sugar concentration. This high R² value, combined with a 
non-significant lack of fit, confirms that the model is both 
robust and predictive, effectively representing the 
relationship between enzyme concentration, hydrolysis time, 
and reducing sugar yield (Mardawati et al., 2018). 

The residual analysis in Figure 1 confirms the adequacy 
of the regression model. The Residuals vs. Predicted plot 
shows a random distribution around zero, indicating 
homoscedasticity and the absence of bias. The Normal 
Probability Plot demonstrates that residuals follow an 
approximately normal distribution, supporting the model's 
validity. These results confirm that the model is reliable for 
predicting reducing sugar concentration (Sasaki & Kohyama, 
2012). 

The surface graph (Figure 2a) and the 3D curve (Figure 
2b) illustrate the relationship between enzyme concentration, 
hydrolysis time, and the resulting concentration of reducing 
sugar. The analysis based on the provided images and 
explanation can be understood through the examination of 
surface and 3D response graphs, along with the derived 
mathematical model. The surface and 3D response graphs 
illustrate that increasing enzyme concentration and 
hydrolysis time generally results in a significant increase in 
reducing sugar concentration. This pattern is consistent with 
findings by (Vasić et al., 2021), observed that enzymatic 
activity typically accelerates the breakdown of complex 
sugars into reducing sugars, especially in the initial phases 
of hydrolysis. However, the trend plateaus after a certain 
threshold, indicating a saturation point where additional 
enzyme or prolonged time does not contribute to significant 
gains in sugar concentration. This plateau is commonly 
attributed to the substrate's limited availability or enzyme 
inhibition phenomena. The mathematical model derived from 
the analysis is expressed as:  

 
 

y = 0.1959 + 0.0856X1 + 0,084X2 + 0,0053X1X2   (2) 
 
 

This equation indicates that both enzyme concentration 
and hydrolysis time have a positive linear influence on the 
reducing sugar concentration. The coefficients suggest that 
enzyme concentration (𝑋1) has a slightly greater impact on 

the response compared to hydrolysis time (𝑋2). 
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Table 6. Validation of the RSM equation model 
 

Optimization 
Factor 

Value  
Reducing Sugar Concentration 
Predicted 
Response 

Actual 
response 

Rehabi
litee 

Enzyme 
Concentration 
(µL) 

60  
13.9% 13,21% 

95.05
% 

Time 
(minutes) 

30 

 
Accuracy Validation of the RSM Equation Model 

The validation of RSM model for optimizing reducing 
sugar production through enzymatic hydrolysis was 
conducted by analyzing the influence of enzyme 
concentration and hydrolysis time. The optimization factors 
were set at an enzyme concentration of 16 µL/30 dry starch 
and a hydrolysis duration of 30 minutes. Under these 
conditions, the RSM model predicted a reducing sugar 
concentration of 13.9%. However, the actual experimental 
result showed a slightly lower reducing sugar concentration 
of 13.21%. To assess the model's reliability, a calculation 
was performed by comparing the actual result to the 
predicted value, resulting in a reliability percentage of 
95.05%. This indicates that the RSM model has a fairly good 
reliability level, although a deviation of approximately 4.95% 
from the predicted value was observed. Such deviations may 
arise due to experimental variability or limitations of the 
model in capturing all influencing factors in the hydrolysis 
process. Demonstrated the effectiveness of RSM in 
optimizing the enzymatic hydrolysis process, highlighting the 
necessity of experimental validation to confirm model 
predictions (Chen et al., 2013). 
 
 
CONCLUSION 
 

The enzymatic hydrolysis of pineapple stem waste (PSW) 
starch for maltodextrin production was successfully 
optimized using Response Surface Methodology (RSM). 
Optimal conditions were determined at an enzyme 
concentration of 16 µL (0.012% w/w dry starch), and a 
hydrolysis time of 30 minutes, yielding 13.21% reducing 
sugars and a DE value of 19.8. The model exhibited good 
predictive accuracy (R² = 0.9873) and low error (%RMS = 
0.1964%). Despite the good performance, the study was 
limited to two variables under laboratory conditions. Future 
work should explore additional factors such as pH, substrate 
concentration, enzyme type, and process scale-up to 
enhance industrial applicability. 
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