Innovation Development of Coffee Berry Borrer (Hypothenemus hampei Ferr.) Pest Control Technology and Their Effectiveness

Siska Rasiska

Abstract


The Coffee Berry Borer (CBB) (Hypothenemus hampei Ferrari)(Coleoptera:Curculionidae:Scolytinae) is a major pest of coffee plants. It caused damage to coffee berries and economic losses for farmers. Various technologies have been carried out to control CBB, including cultural biological, chemical, and sanitation. However, of the technology control of CBB,  only a few literature that discussed the effectiveness and efficiency, both socially, economically and their impact on the environment. Thus, this paper aimed to: 1) review research CBB control technology based on characteristics; and 2) assessing the effectiveness and efficiency of the technology in controlling CBB based on compatibility, applicability, availability, safety, sustainability, affordability and economic. This study was conducted using a systematic review of the literature from the search engine Science.direct, Google.scholar, which was identified from 1996 to 2020. The search resulted showed that there were 59 articles related to CBB control technology and were divided into several types, namely 22 articles that discuss technology in cultural, 31 articles that discuss biological control, 5 articles that discuss technology chemically, and 1 articles that discusses orchard sanitation technology. CBB control technologies that are considered to have compatibility, safety, sustainability, affordability and economic are cultural, biological control and sanitation. However, if it is related to applicability and availability, cultural and sanitation can be the main choice. Many studies on biological technology showing advantages compared to other technologies, thus, biological control technology as a preventive and monitoring effort is still being developed. One of them is developing biological technology with a landscape approach.

Keywords


cultural, biological control, chemical, sanitation, landscape approach

Full Text:

PDF

References


Allard G, & Moore D. 2011. Heterorhabditis sp. Nematodes as agents for coffee berry borer, Hypothenemus hampei (Scolytidae). Journal of invertebrate phatology 54:45-48. https://doi. org/10.1016/0022-2011(89)90138-9.

Altieri MA, & Nicholls C. 2004. Biodiversity and Pest Management in Agroecosystems.

Aristizabal LF, Bustillo AE, & Arthurs SP. 2016. Strategies from Latin America that could be usefull for coffee farmers in Hawaii. Insects 7(1):6. https://doi.org/10.3390/insects7010006.

Avelino J, Romero-Guardan A, Cruz-Cuellar, HF, Declerck F. 2012. Lanscape Context And Scale Differentially Impact Coffee Leaf Rust, Coffee Berry Borer, And Coffee Root-Knot Nematodes. Ecology Apllication 22.pp:584-596.https://doi.org/10.1890/11-0869.1.

Badan Pusat Statistik. 2018. Statistik Indonesia. https://www.bps.go.id/publication/2018/07/03/5a963c1ea9b0fed6497d0845/statistik-indonesia-2018.html.

Baker BP, Green TA, Loker AJ. 2020. Biological Control And Integrated Pest Management In Organic And Convensional Systems. Biological Control 140:104095.https://doi.org /10.1016/j.biocontrol.2019.104095.

Beilhe LB, Roudine S, Perez JAQ, Allinne C, Daout D, Mauxion R, & Carval D. 2020. Pest-regulating networks of the coffee berry borer (Hypothenemus hampei) in agroforestry systems. Crop protection 131:105036.https:// doi.org/10.1016/j.cropro.2019.105036.

Bigirimana, J, Adam CG, Ggatarayiha CM, Muhutu JC, & Gut LJ. 2019. Occurrence of potato taste defect on coffee and its relations with management practices in Rwanda. Agriculture, ecosystem and environment 269:82-87.https://doi.org/10.1016/j.agee.2018.09.022.

Boukal, DS, Bideault A, Carreira BM, & Sentin A. 2019. Species Interaction Under Climate Change: Connecting Kinetic Effects Of Temperature On Individuals To Community Dynamics. Current opnion in Insect Science 35.pp:88-95.http://doi.org/10.1016/j.cois.2019. 06.014.

Bosselmann, AS, Dons K, Oberthur T, Olsen CS, Raebild A, & Usma H. 2009. The influence of shade trees on coffee production in small holder coffee agroforestry systems in southern colombia. Agricultura, ecosystem and environment 129:253-260.https://doi.org/10. 1016/j.agee.2008.09.004.

Brevault T. & Clouvel P. 2019. Pest Management: Reconciling Farming Practices and Natural Regulation. Crop Protection 115:1-6.

Buechley ER, Sekercioglu CH, Atickem A, Gebremichaen G, Ndungu JK, Mahamued BA, Beyene T, Mekonnen T, & Lens L. 2015. Importance of Ethiopian shade coffee farms for forest bird conservation. Biological conservation 188:50-60.https://doi.org/10.101 6/j.biocon.2015.01.011.

Castillo JM, Casas J, & Romero E. 2011. Isolation of an endosulfan-degrading bacterium from a coffee farm soil: persistence and inhibitory effects on its biological functions. Scince of the total environment 412-413:20-27.https:// doi.org/10.1016/j.scitotenv.2011.09.062.

Costa NCR, Picelli ECM, Silva FMA, Gonring AHR, Guedes RNC, Durigan MR, & Fernandes FL. 2020. Cyantraniliprole susceptability baseline, resistance survey and control failure likelihood in the coffee berry borer Hypothenemus hampei. Ecotoxicology and environmental safety 203:110947.https://doi.org/10.1016/ j.ec oenv.2020.110947.

Mota LHC, Silva WD, Sermarini R.A, Demetrio CGB, Bento JMS, Delalibera-Jr I. 2017. Autoinoculation trap for management of Hypothenemus hampei (Ferrari) with Beauveria bassiana (Bals.) in coffee crops. Biological control 111:32-39.https://doi.org/ 10.1016/j.biocontrol.2017.05.007.

Celestino FN, Pratissoli D, Machado LC, Goncalves, SJHJ, Vagner TQ & Mardgan, L. 2016. Control of coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae: Scolitinae) with botanical insecticides and mineral oils. Acta Scientiarum. Agronomy Maringa, 38(1):1-8.

De la Mora A, Garcia-Ballinas JA, & Philpott SM. 2015. Local, landscape and diversity driver of predation services provided by ants in a coffee landscape in Chiapas, Mexico. Agriculture, ecosystem and environment 201:83-91.https://doi.org/10.1016/j.agee.2014.11.006.

Denu D, Platts PJ, Kelbessa E, Gole TW, & Marchant R. 2016. The role of traditional coffee management in forest conservation and carbon storage in the Jimma Highlands, Ethiopia. Forest Trees Livelihoods 25(3):226-238.

Direktorat Jendral Perkebunan. 2017. Pengenalan dan Pengendalian Organisme Pengganggu Tumbuhan (OPT) Tanaman Kopi. Direktorat Perlindungan Perkebunan, Kementerian Pertanian.

Direktorat Jendral Perkebunan. 2019. Outlock 2017 Komoditas pertanian sub sektor perkebunan kopi. Kementerian Pertanian. Jakarta.

Dufour BP, Kerana IW, & Ribeyre F. 2019. Effect of coffee tree pruning on berry production and coffee berry borer infestation in the Toba Highlands (North Sumatra). Crop Protection 122:151-158. https://doi.org/10.1016/j.cropro. 2019,05.003.

Escobar-Ramirez S, Grass I, Armbrecht I, & Tscharntke T. 2019. Biological control of the coffee berry borer: main natural enemies, control success and landscape influence. Biological control 136:103992.https://doi.org/ 10.1016/j.biocontrol.2019.05.011.

Foley JA, DeFries R, Asner GP, Barford C, Bonan G, & Carperter SR. et al. 2005. Global Concequences Of Land Use. Science 309.pp: 570-574.

Food and Agriculture Organization. 2017. Integrated pest management of major pest and diseases in Eastern Europe and The Caucasus. ISBN 978-92-5-109144-9.

Gonthier DJ. Ennis KK, Philpott SM, Vandemeer J, & Perfecto I. 2013. Ants defend coffee from berry borer colonization. Biocontrol 58:815-820.

Gordon C, Manson R, Sundberg J, & Cruz-Angon A. 2007. Biodiversity, profitability and vegetation structure in a Mexican coffee agroecosystem. Agriculture, ecosystem and environment 118:256-266.https://doi.org/10.1016/j.agee.20 06.05.023.

Guadarrama, AC, Martinez- Salinas A, N. Aristizabal, & Ricketts TH. 2019. Ecosystem services by birds and bees in coffee in a changing climate: a review of coffee berry borer control and pollination. Agriculture, ecosystem and environment 280:53-67.https://doi.org/10. 1016/j.agee.2019.04.011.

Hayyun DA, Megantara EN, & Parikesit. 2018. Kajian layanan ekosistem pada sistem agroforestry berbasisi kopi di Desa Cisero, Garut. Jurnal Pengelolaan Lingkungan Berkelanjutan 2(3). https://doi.org/10.36813/ jplb.2.3.200-219.

Heeb L. Jenner E, & Cock MJW. 2019. Climate Smart Pest Management: Building Resilience of Farms and Landscape to Changing Pest Threath. Journal of Pest Science.doi:10.1007/s10340-019-01083-y.

Infante F, Castillo A, Perez J, & Vega FE. 2013. Field-cage evaluation of the parasitoid Phymastichus coffea as a natural enemies of coffee berry borer, Hypothenemus hampei. Biological control 67:446-450. https://doi.org /10.1016/j.biocontrol.2013.09.019.

Intergovermental Panel on Climate Change. 2018. Global Warming of 1.5oC. Summary for Policymaker. ISBN 978-92-9169-151-7.

Iverson AL, Gonthier DJ, Pak D, Ennis KK, Burnham RJ, Perfecto I, Rodriguez MR, & Vandermeer JH. 2019. A multifunctinal approach for achieving simultaneous biodiversity conservation and farmer livelihood in coffee agroecosystem. Biological conservation 238:108179.https://doi.org/10.1016/j.biocon.2019.07.024.

Jaramillo J, Borgemeister C, & Baker P. 2006. Coffee berry borer Hypothenemus hampei (Coleoptera:Curculionidae): Searching for sustainable control strategies. In buletin of entomology research 96 (3):223-233.doi:https://doi.org/10.1079/BER2006434.

Jaramillo CR, Santos RHS, Martinez HEP, Cecon PR., & Fardin MP. 2010. Produsction and vegetative growth of coffee trees under fertilization and shade levels. Scientia Agricola 67: 639-645.

Jezeer RE, Santos MJ, Verweij PA, Boot RGA, & Clough Y. 2019. Benefits for multiple ecosystem services in Peruvian coffee agroforestry system without reducing yield. Ecosystem services 40:101033. https://doi.org/ 10.1016/j.ecoser.2019.101033.

Jimenez-Garcia L, Garcia-Martinez YG, Marco MV, Perez MI, & Jimenez-Garcia D. 2019. Biodiversity Analysis of Natural Arthropoda Enemies in Vineyard Agroecosystems in La Rioja, Spain. Journal of Asia-Pasific Entomology 22: 308-315. https://doi.org/10. 1016/j.aspen.2019.01.008.

Johnson, MA, Fortna S, Hollingsworth RG, & Manoukis NC. 2019. Postharvest population reservoirs of coffee berry borer (Coleoptera:Curculionidae) on Hawaii Island. Journal of economic Entomology 122(6):2833-2841.https://doi.org/10.1093/jee/toz219.

Kagezi. 2019 Kagezi. H.Godfrey, Kucel Patrick, Kobusinge Judith, Olango D.Nicholas, Nakibuule Lilian, Wagoire, W.William. 2018. Predicting The Respon Of Insect Pests And Diseases Of Arabica Coffee To Climate Change Along An Altitudinal Gradient In Mt.Elgon Region, Uganda. Journal of Agriculture and Environmental Science 7: 134-140. doi: 10.15640/jaes.v7n1a14.

Karp. 2013. Karp DS., C. Kramer, R Meehan TD, Martin EA, Del Clerde F. Grab H….Martinez Salinas A. 2018. Crop Pests And Predators Exhibit Inconsistent Responses to Surrounding Landscape Composition. Proceeding of the National Academic of Science of the United State of America 115: E7863-E7870. doi:10.1073/pnas.1800042115.

Kazemi H, Klug H, & Kamkar B. 2018. New Services and Roles of Biodiversity In Modern Agroecosystems: A Review. Ecological indicators 93:1126-1135.https://doi.org/10.101 6/j.ecolind.2018.06.018.

Kementerian Pertanian Republik Indonesia. 2015. Outlook Kopi 2015. Portal Epublikasi Pertanian, Kementerian Pertanian Republik Indonesia.

Lauziere I, Perez-Lachaud G, & Brodeur J. 1999. Influence of host density on the reproductive strategy of Cephalonomia stephanoderis, a parasitoid of the coffee berry borer. Entomologia experimentalis et applicata 92 (1).https://doi.org/10.1046/j.1570-7458.1999. 00520.x.

Lauziere I, Perez-Lachaud G, & Brodeur J. 2000. Behavior and activity pattern of Cephalonomia stephanoderis (Hymenoptera:Bethylidae) attacking the coffee berry bores, Hypothenemus hampei (Coleoptera: Curculinoidae, Scolytidae). Journal of insect behavior 13:375-395.

Lopez-Pazos SA, J. E.C. Gomez JEC, & Salamanca JAC. 2009. Cry1B and Cry3A are active against Hypothemenus hampei Ferrari (Coleoptera:Scolytidae). Journal of invertebrate pathology 101(3):242-245.https://doi.org/10.1016/j.jip.2009.05.011.

Markkula I, Turunen M, & Rasmus S. 2019. A Review of Climate Change Impact on A Ecosystem Services In The Sammi Homeland In Finland. Science of the Total Environment 692:1070–1085.http://doi.org/10.1016/j. scitotenv.2019.07.272.

Marino YA, Perez ME, Gallardo F, Trifilio M, Cruz M, & Beyman P. 2015. Sun vs shade affects infestation, total population and sex ratio of the coffee berry borer (Hypothenemus hampei) in Puerto Rico. Agriculture, ecosystem and environment 222:258-266.https://doi.org/10. 1016/j.agee.2015.12.031.

Martinez-Salinas A, DeClerck F, Vierling K, Vierling L, Legal L, Mendoza SV, & Avelino J. 2016. Bird functional diversity support pest control services in a Costa Rican coffee farm. Agriculture, ecosystem and environment 235:277-288. https://doi.org/10.1016/j.agee. 2016.10.029.

Milligan MC, Johnson M, Garfinkel M, Smith C, & Njoroge P. 2016. Quantifying pest control services by birds and ants in Kenyan coffee farms. Biological cinservation 194:58-65 https://doi.org/10.1016/j.biocon.2015.11.028.

Moguel P, & Toledo VM. 2001. Biodiversity conservation in traditional coffee system in Mexico. Conservation Biology 13. https://doi.org/10.1046/j.1523-1739.1999. 97153.x.

Molina D, Zamora H, & Blanco-Labra A. 2010. An inhibitor from Lupinus bogotensis seeds effective against aspartic proteases from Hypothenemus hampei. Phytochemistry 71(8-9):923-929.https://doi.org/10.1016/j.phytoche m.2010.03.006.

Mone S, Kusha KM, Jathanna D, Ali M, & Goel A. 2014. Comparison of insect biodiversity between organic and conventional plantation in Kodagu, Karnataka, India. Journal of threated taxa 6. https://doi.org/10.11609/JoTT.o3778. 6186-94.

Monzon AJ, Guharay F, & Klingen I. 2008. Natural occurrence of Beauveria bassiana in Hypothenemus hampei (Coleoptera: Curculionidae) populations in unsprayed coffee fields. Journal of invertebratae pathology 97(2):134-141.https://doi.org/10. 1016/j.jip.2007.07.008.

Morris JR, Vandemeer J, & Perfecto I. 2015. A keystone ant species provides robust biological control of the coffee berry borer under varying pest densities. PlosOne. https://doi.org/ 10.1371/journal.pone.0142850.

Nakai M, & Lacey LA. 2017. Chapter 15-Microbial control of insect pest of tea and coffee. Microbial control of insect and mites pests:223-235.https://doi.org/10.1016/B978-0-12-803527-6.00015-9.

Nesper M, Kueffer C, Krishnan S, Kushalappa CG, & Ghazoul J. 2017. Shade tree diversity enhances coffee production and quality in agroforestry systems in western ghats. Agriculture, ecosystem and environment 247:172-181. https://doi.org/10.1016/j.agee.2017.06.024.

Ozuna C, Mulik S, Rodriguez BV, Juarez MDRA, & Lopez CLF. 2020. The effect of organic farming on total phenol, total flavonoids, brown compounds and antioxidant activity of spent coffee grounds from Mexico. Biological agriculture and horticulture: An international journal for sustainable production system 36(2):107-118. https://doi.org/10.1080/0144 8765.2019.1704876.

Pak D, Iverson AL, Ennis KK, Gonthier DJ, & Vandemeer JH. 2015. Parasitoid wasps benefit from shade tree shade and landscape complexity in Mexican coffee agroecosystems. Agriculture, ecosystem, environment 206: 21-32. https://doi.org/10.1016/j.agee.2015.03.017.

Parkin CS, Brun LO, & Suckling DM. 1992. Spray deposition in relation to endosulfan resistance in coffee berry borer (Hypothenemus hampei) (Coleoptera:Scolitidae) in New Caledonia . Crop protection 11(3):213-220. https://doi.org/ 10.1016/0261-2194(92)90 039-8.

Pava-Ripoll M, Posada FJ, Momen B, Wang C, & Leger RSt. 2008. Increased pathogenicity against coffee berry borer, Hypothenemus hampei (Coleoptera:Curculionidae) by Metarzhium anisopliae expressing the scorpion toxin (AaIT) gene. Journal of invertebrate pathology 99(2):220-226.https://doi.org/10. 1016/j.jip.2008.05.004.

Perfecto I, Rice RA, Greenberg R, & Van der Voort ME. 1996. Shade coffee: a dissapearing refuge for biodiversity: shade coffee plantation can contain as much biodiversity as forest habitat. BioScience 46:598-608. https://doi.org/10. 2307/1312989.

Perfecto I, Vandermeer J, Hanson P, & Cartin V. 1997. Arthropod biodiversity loss and the transformation of a tropical agro-ecosystem. Biodiversity & Conservation 6:935-945.

Perfecto I, & Armbrecht I. 2003. Litter-twig dwelling ant species richness and predation potential within a forest fragment and neighboring coffee plantation of contrasting habitat quality in Mexico. Agriculture, ecosystem and environment 97:107-115.https://doi.org/10. 1016/S0167-8809(03)00128-2.

Philpott SM, & Armbrecht I. 2006. Biodiversity in tropical agroforests and the ecological role of ant diversity in predator function. Ecological entomology 31. https://doi.irg/10.1111/j.1365-2311.2006.00793.x.

Philpott SM, & Armbrecht I. 2006. Biodiversity in tropical agroforests and the ecological role of ant diversity in predator function. Ecological entomology 31. https://doi.irg/10.1111/j.1365-2311.2006.00793.x.

Plata-Rueda A, Martinez LC, Costa NCR, Zanuncio JC, de Sena Fernandes ME, Serrao JE, Guedes RNC, & Fernandes FL. 2019. Chlorantraniliprole-mediated effects on survival, walking abilities, and respiratory the coffee berry borer, Hypothenemus hampei. Ecotoxicology and environment 172:53-58. https://doi.org/10.1016/j.ecoenv.2019.01.063.

Posada F, & Vega FE. 2006. Inoculation and colonization of coffee seedlings (Coffea arabica L.) with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycoscience 47(5):284-289. https://doi.org/10.1007/S10267-006-0308-6.

Rhan E, Liebig T, Ghazoul J, van Asten P, Laderach P, Vaast P, Sarmiento A, Garcia C, & Jarsogne L. 2018. Opportunities for Sustainable Intensification of Coffee Agroecosystem Along an Altitudinal Gradient on MT.Elgon, Uganda. Agriculture, Ecosystem and Environment 263: 31-40. http://doi.org/10.1016/j.agee.2018.04 019.

Rao GVR, Kumari BR, Sahrawat KL, & Wani SP. 2015. Integrated pest management (IPM) for reducing pesticide residues in crops and natural resources. New horizons in insect science: towards sustainable pest management. Publisher: Springer India. http://dx.doi.org/ 10.1007/978-81-322-2089-3_35.

Rajula J, Rahman A, & Krutmuang P. 2020. Entomophatogenic fungi in southeast asia and africa and their possible adoption in biological control.Biological control 151:104399.https:// doi.org/10.1016/j.biocontrol.2020.104399.

Ravnborg HM. 2004. Collective action and property rights for sustainable development: Collective action in pest management. 2020 vision for food, agriculture and the environment. International Food Policy Research Institute.

Rehner SA, Posada F, Buckley EP, Infante F, Castillo A, & Vega FE. 2006. Phylogenetic origins of African and Neotropical Beauveria bassiana s.l. pathogens of the coffee berry borer, Hypothenemus hampei. Journal of invertebrate pathology 93:11-21. https://doi.org/10.1016/ j.jip.2006.04.005.

Reyes EIM, Farias ES, Silva EMP, Filomeno CA, Plata MAB, Picanco MC, & Barbosa LCA. 2018. Eucalyptus resinifera essensial oils have fumigant and repellent action against Hypothenemus hampei. Crop protection 116:49-55. https://doi.org/10.1016/j.cropro. 2018.09.018.

Richter A, Klein AM, Tscharntke T, & Tylianakis JM. 2007. Abandonement of Coffee Agroforest Increases Insect Abundance and Diversity. Agroforestry System 69: 175-182.doi:10.1007/ s10457-006.9020-y.

Rivera S, Saraeny I, Forooshani ZH, Soto EJ, Rodriguez JAC, & Philpott SM. 2018. High intermediary mutualist density provides consistent biological control in a tripatrite mutualism. Biological control 118:26-31. https://doi.org/10.1016/j.biocontrol.2017.12.002.

Robinson WA, Ruedy R, & Hansen JE. 2002. General circulation model simulations of recent cooling in the east-central United States. J. Geophys. Res., 107, no. D24, 4748, doi:10.1029 / 2001JD001577.

Rodriguez D, Cure JR, Gutierrez AP, & Cotes JM. 2017. A coffee agroecosystem model: III. Parasitoid of the coffee berry borer (Hypothenemus hampei) Ecological Modelling 363:96-110.https://doi.org/10.1016/j.ecomodel. 2017.08.008.

Rocha G, Henrique A, Silva FMA, Picelli ECM, Plata-Rueda RA, Gorri JER, & Fernandes FL. 2019. Comparative bioassay methods to determine diamide susceptability for two coffee pest. Crop Protection 121:34-38. https://doi.org/10.1016/j.cropro.2019.03.010.

Sauvadet M, Meersche KVD, Allinne C, Gay F, Filho DMVF, Chauvat M, Becquer T, Tixier P, & Harmand JM. 2019. Shade Trees have Higher Impact on Soil Nutrient Availablility and Food Web in Organic than Conventonal Coffee Agroforestry. Science of The Total Environment 649:1064-1074. https://doi.org/ 10.1016/j.scitotenv,2018.08.291.

Schmidt JM, Whitehouse T, Green K, Krehenwin-Kel H, Schmidt-Jeffris R, & Sial AA. 2019. Local And Landscape Scale Heterogeneity Shape Spotted Wing Drosophila (Drosophilla suzukii) Activity And Natural Enemy Abundance: Implications For Trophic Interactions. Agriculture Ecosystem and Environment 272:86-94.http://doi,org/10.1016/j.agee.2018. 11.014.

Simon-Gruita, A. 2019. Genetic Engineering in Coffee. Caffeinated and Cocoa Based Beverages: The Science of Beverages. Cambridge, United Kingdom: Woodhead publishing. v.8, p.447-488.

Sharma HC, & Prabhakar CS. 2014. Chapter 2. Impact Of Climate Change On Pest Management And Food Security. Integrated Pest Management: current concepts and ecological perspective :23-36. https://doi.org/10.1016/B.978-0-12-398529-3.00003-8.

Soto-Pinto L, Perfecto I, Caballero-Nieto J. 2002. Shade over coffee: its effects on berry borer, leaf rust, and spontaneous herbs in Chiapas, Mexico. Agroforestry systems 55:37-45.

Souza HND, Goede, RGMD, Brussaard L, Cardoso IM, Duarte EMG, Fernandes RBA, & Gomes LC. and Pulleman, M.M. 2012. Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agriculture, Ecosystems & Environment, 146(1), pp. 179–196.

Syakir M & Surmaini E. 2017. Perubahan Iklim dalam Konteks Sistem Produksi dan Pengembangan Kopi di Indonesia. Jurnal Penelitian dan Pengembangan Pertanian 36(2):77-90.

Queiroz VT, Azevedo MM, Quadros IPS, Costa AV, Amaral AA, Santos GMADA, Juvanhol RS, Telles LAA, & Santos AR. 2018. Environmental risk assesssment for sustainable pesticide use in coffee production. Journal of contaminant hydrology 219:18-27. https://doi.org/10.1016/j.jconhyd,2018.08.008.

schora, H. & Cherubini, F. 2020. Co-benefits and trade-offs of agroforestry for climate change mitigation and other sustainability goals in West Africa’, Global Ecology and Conservation, 22 (15).

Vega FE, Brown SM, Chen H, Shen E, Nair MB, Ceja-Navarro JA, Brodie EL, Infante F, Dowd PF, & Pain A. 2015. Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer Hypothenemus hampei. Scientific report 5:12525.doi:10.1038/srep 12525.

Wang N, Jassogne L, van Asten PJA, Mukasa D, Wanyama I, Kagezi G, & Giller KE. 2015. Evaluating coffee yield gaps and important biotic, abiotic, and management factor limiting coffee production in Uganda. European Journal of Agronomy 63:1-11.https://doi.org/10.1016 /j.eja.2014.11.003.

Zorzetti J, Ricietto APS, Pazion FAP, Meneghin AM, Neves PMOJ, Vilas-Boas LA, & Vilas-Boas GT. 2018. Isolation, morphological and molecular characterization of Bacillus thuringiensis against Hypothenemus hampei Ferrari (Coleoptera:Curculionidae:Scolytidae). Revista Brasileira de Entomologia 62(3):198-204.https://doi.org/10.1016/j.rbe.2018.07.002




DOI: https://doi.org/10.24198/cropsaver.v4i2.36257

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 CROPSAVER - Journal of Plant Protection


2019 © Publisher by Department of Plant Pests and Diseases, Universitas Padjadjaran

In Collaboration With

Centre for Product Development and Partnership Study (Puspromit)

Indonesian Entomological Society (PEI) and

Indonesian Phytopathological Society (PFI)

Chapter Bandung



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.