FORMULASI CO-AMORF UNTUK MENINGKATKAN KELARUTAN OBAT BCS KELAS II : ARTICLE REVIEW

SABNABILA KHOERUN NISA, Taofik Rusdiana

Abstrak


Sifat kelarutan pada API (Active Pharmaceutical Ingredients) menjadi masalah penting dalam perkembangan dan formulasi obat. Banyak cara dilakukan untuk memperbaiki kelarutan. Salah satu metode yang dapat dilakukan dengan perubahan bentuk obat dari Kristal menjadi amorf, akan tetapi bentuk tersebut memiliki sifat yang metastabil. Sekarang ini, metode co-amorf yang dikenalkan oleh Chieng, et.al. pada tahun 2009, menjadi metode baru untuk mengatasi kelarutan. Sistem co-amorf dikarakterisasi oleh penggunaan komponen berat molekul rendah yang dicampur menjadi fase tunggal co-amorf yang homogen. Metode ini sedang banyak dilakukan penelitian dan diharapkan memberikan hasil yang menjanjikan untuk mengatasi masalah kelarutan dan bioavailabilitas.

Kata Kunci: Sistem formulasi co-amorf, amorf


Teks Lengkap:

PDF

Referensi


Aaltonen, J. & Rades, T., 2009. Towards Physico-Relevant Dissolution Testing: The Importance of Solid-State Analysis in Dissolution. Dissolution Technologies, Volume 16, pp. 47-54.

Adeli, E., 2014. A comparative evaluation between utilizing SAS supercritical fluid technique and solvent evaporation method in preparation of Azithromycin solid dispersions for dissolution rate enhancement. The Journal of Supercritical Fluids, Volume 87, pp. 9-21.

Adeli, E. & Mortazavi, S., 2014. Design, formulation and evaluation of Azithromycin binary solid dispersions using Kolliphor series for the solubility and in vitro dissolution rate enhancement. Journal of Pharmaceutical Investigation, 44(2), pp. 119-131.

Alleso, M. et al., 2009. Enhanced dissolution rate and synchronized release of drugs in binary systems through formulation: Amorphous naproxen–cimetidine mixtures prepared by mechanical. Journal of Controlled Release, Volume 136, pp. 45-53.

Brown, C. et al., 2014. Hot-Melt Extrusion for Solid Dispersions: Composition and Design. In: Amorphous Solid Dispersions. New York: Springrer, pp. 197-230.

Chieng, N., Aaltonen, J., Saville, D. & Rades, T., 2009. Physical characterization and stability of amorphous indomethacin and ranitidine hydrochloride binary systems prepared by mechanical activation. European Journal of Pharmaceutics and Biopharmaceutics, Volume 71, pp. 47-54.

Dengale, S., Grohganz, H., Rades, T. & Lobmann, K., 2016. Recent advances in co-amorphous drug formulations. Adv Drug Delivery Rev, 100(1), pp. 16-25.

Dengale, S., Hussen, S. & Krishna, B., 2015. Fabrication, solid state characterization and bioavailability assessment of stable binary amorphous phases of ritonavir with quercetin. Eur J Pharm Biopharm, 89(3), pp. 29-38.

Dengale, S. j., Grohganz, H., Rades, T. & lobmann, K., 2015. Advanced Drug Delivery Reviews. [Online]

Available at: doi: 10.1016/j.addr.2015.12.009

[Accessed 24 June 2018].

Dengale, S. et al., 2014. Preparation and characterization of co-amorphous Ritonavir–Indomethacin systems by solvent evaporation technique: Improved dissolution behavior and physical stability without evidence of intermolecular interactions. European Journal of Pharmaceutical Sciences, Volume 62, pp. 57-64.

Fitriani, L., Haqi, A. & Zaini, E., 2016. Preparation and characterization of solid dispersion freeze-dried efavirenz– polyvinylpyrrolidone K-30. Journal of Advanced Pharmaceutical Technology & Research, 7(3), p. 105.

Gao, Y., Liao, J., Qi, X. & Zhang, J., 2013. Coamorphous repaglinide–saccharin with enhanced dissolution. Int J Pharm, 450(290), p. 5.

Gohganz, H., Priemel, P. & Lobmann, K., 2014. Refining stability and dissolution rate of amorphous drug formulations. Expert Opin Drug Deliv, 11(9), pp. 77-89.

Hoppu, P., Hietala, S., Schantz, S. & Juppo, A., 2009. Rheology and molecular mobility of amorphous blends of citric acid and paracetamol. Eur J Pharm Biopharm, Volume 71, pp. 55-63.

Hu, Y., Gniado, K., Erxleben, A. & McArdle, P., 2014. Mechanochemical reaction of sulfathiazole with carboxylic acids:formation of a cocrystal, a salt, and coamorphous solids. Crystal Growth Des, 14(80), pp. 3-13.

Janssens, S. & Van den Mooter, G., 2009. Review: physical chemistry of solid. Journal of Pharmacy and Pharmacology, Volume 61, pp. 1571-1586.

Jensen, K., Blaabjerg, L. & Lenz, E., 2016. Preparation and characterization of spray-dried co-amorphous drug–amino acid salts. J Pharm Pharmacol.

Jensen, K., Lobmann, K., Rades, T. & Grohganz, H., 2014. Improving co-amorphous drug fromulations by the addition of the highly water soluble amino acid proline. Pharmaceutics, Volume 6, pp. 416-435.

Just, S., Sievert, F., Thommes, M. & Breitkreutz, J., 2013. Improved group contribution parameter set for the application of solubility parameters to melt extrusion. Eur J Pharm Biopharm, 85(1190), p. 9.

Kalepu, S. & Nekkanti, V., 2015. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharmaceutica Sinica B, 5(5), pp. 442-453.

Kitak, T., Dumicic, A. & Planinsek, O., 2015. Determination of solubility parameters of ibuprofen and ibuprofen lysinate. Molecules, 20(215), pp. 49-68.

Laitinen, R., Lobmann , K. & Grohganz, H., 2014. Amino acids as co-amorphous excipients for imvastatin and glibenclamide: physical properties and stability. Mol Pharm, 11(238), pp. 1-9.

Lim, A., Lobmann, K. & Grohganz, H., 2016. Investigation of physical properties and stability of indomethacin–cimetidine and naproxen–cimetidine co-amorphous systems prepared by quench cooling, coprecipitation and ball milling. J Pharm Pharmacol, Volume 68, pp. 36-45.

Lobmann, K., 2013. Co-amorphous drug formulations. [Online]

Available at: https://otago.ourarchive.ac.nz/handle/10523/4112

[Accessed 24 June 2018].

Lobmann, K. et al., 2013. Amino acids as co-amorphous stabilizers for poorly water soluble drugs – Part 1: Preparation, stability and dissolution enhancement. European Journal of Pharmaceutics and Biopharmaceutics, Volume 85, pp. 873-881.

Lobmann, K. et al., 2014. Stabilized Amorphous Solid Dispersions with Small Molecule Excipients. In: Amorphous Solid Dispersions. New York: Springrer, pp. 613-636.

Lobmann, K. et al., 2013. Amino acids as co-amorphous stabilizers for poorly water-soluble drugs – Part 2: Molecular interactions. European Journal of Pharmaceutics and Biopharmaceutics, Volume 85, pp. 882-888.

Lobmann, K., Laitinen, R. & Grohganz, H., 2011. Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol Pharm, 8(19), pp. 19-28.

Lobmann, K., Laitinen, R. & Grohganz, H., 2013. A theoretical and spectroscopic study of co-amorphous naproxen and indomethacin. Int J Pharm, 30(80), p. 7.

Lobmann, K., Laitinen, R. & Hrohganz, H., 2013. A theoretical and spectroscopic study of co-amorphous naproxen and indomethacin. Int J Pharm, 30(80), p. 7.

Lobmann, K. et al., 2012. Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions. European Journal of Pharmaceutics and Biopharmaceutics, Volume 81, pp. 159-169.

Masuda, T., Yoshihashi, Y. & Yonemochi, E., 2012. Cocrystallization and amorphization induced by drug–excipient interaction improves the physical properties of acyclovir. Int J Pharm, 422(160), p. 9.

Newman, A., Knipp, G. & Zografi, G., 2012. Assessing the performance of amorphous solid dispersions. J Pharm Sci, 101(13), pp. 55-77.

Paluch, K., McCabe, T. & Muler-Bunz, H., 2013. Formation and physicochemical properties of crystalline and amorphous salts with different stoichiometries formed between ciprofloxacin and succinic acid. Mol Pharm, 10(36), pp. 40-54.

Pharmaceutical Solid State Research Cluster, 2013. Co-Amorphous Drug Delivery Systems. [Online]

Available at: http://www.pssrc.org/news/82/co-amorphous-drug-delivery-systems

[Accessed 24 June 2018].

Qian, S. et al., 2015. Coamorphous Lurasidone Hydrochloride–Saccharin with Charge-Assisted Hydrogen Bonding Interaction Shows Improved Physical Stability and Enhanced Dissolution with pH. Independent Solubility Behavior, Crystal Growth, Volume 15, pp. 2920-2928.

Srinarong, P., de Waard, H., Frijlink, H. & Hinrichs, W., 2011. Improved dissolution behavior of lipophilic drugs by solid dispersions: The production process as starting point for formulation considerations. Expert Opin Drug Deliv, 8(11), pp. 21-40.

Syayanfar, A., Ghavimi, H., Hamishehkar, H. & Jouyban, A., J Pharm Pharm. Coamorphous atorvastatin calcium to. improve its physicochemical and oharmacokinetic properties, 16(5), pp. 77-87.

Telang, C., Mujumdar, S. & Mathew, M., 2009. improved physical stability of amorphous state through acid base interactions. J Pharm Sci, 98(21), pp. 49-59.

Thakral, S. & Thakral, N., 2013. Prediction of drug-polymer miscibility through the use of solubility parameter based flory-huggins interaction parameter and the experimental validation: PEG as model polymer. J Pharm Sci, 102(22), pp. 54-63.

Vaka, S. et al., 2014. Excipients for Amorphous Solid Dispersions. In: Amorphous Solid Dispersions. New York: Springrer, pp. 123-161.

Wickstrom, H. et al., 2015. Improvement of dissolution rate of indomethacin by inkjet printing. European Journal of Pharmaceutical Sciences, Volume 75, pp. 91-100.

Williams, H., Trevaskis, N. & Charman, S., 2013. Strategies to address low drug solubility in discovery and development. Pharmacol Rev, Volume 65, pp. 315-499.




DOI: https://doi.org/10.24198/jf.v16i1.17480

DOI (PDF): https://doi.org/10.24198/jf.v16i1.17480.g8648

Refbacks

  • Saat ini tidak ada refbacks.




Sitasi manajer:   

 

 

Jurnal ini diindeks dalam:

 

 

View My Stats 

ISSN: 1693-1424

e-ISSN: 2716-3075

 

Farmaka by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Copyright © 2013 Jurnal Farmaka - All Right Reserved