Review : Stabilitas Bahan Alam dalam Mikroenkapsulasi
Abstrak
Mikroenkapsulasi merupakan teknologi menyalut bahan inti yang digunakan sebagai teknik perlindungan bahan inti dari pengaruh lingkungan, meningkatkan stabilitasnya, menutupi bau dan rasa, dan juga dapat mempertahankan sifat asli dari bahan inti yang dienkapsulasi. Dari beberapa penelitian bahan alam memiliki kelemahan dalam stabilitas penyimpanannya sehingga mikroenkapsulasi dapat menjadi pilihan untuk mejaga setabilitasnya. Metode pembuatan mikroenkapsulasi dibedakan menjadi beberapa proses secara Kimia, Fisika-Kimia dan Fisika. Artikel ini dibuat menggunakan metode dan referensi yang didapat dari beberapa database dan instrumen pencarian secara online yang diterbitkan secara nasional dan internasional. Referensi yang didapatkan berasal dari database elektronik seperti google scholar, sciendirect, MDPI, NCBI dari tahun 2007-2020. Artikel ini akan membahas stabilitas dari bahan alam yang dibuat ke dalam bentuk mikroenkapsulasi. Dari beberapa penelitian menggunakan bahan inti yang berasal dari bahan alam membuktikan bahwa mikroenkapsulasi dapat membantu bahan inti tersebut menjadi lebih stabil dalam penyimpanan, menjaga umur simpan dari bahan inti menjadi lebih lama dan dapat mempertahankan aktivitas dari bahan inti tersebut. Mikroenkapsulasi dapat menjadi pilihan untuk menjaga stabilitas dari bahan alam.
Kata Kunci
Teks Lengkap:
PDFReferensi
Champagne CP, Fustier P. Microencapsulation for the improved delivery of bioactive compounds into foods. Curr Opin Biotechnol. 2007;18(2):184–90.
Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C. Nanoencapsulation Techniques for Food Bioactive Components: A Review. Food Bioprocess Technol. 2013;6(3):628–47.
Lee YK, Chang YH. Microencapsulation of a maca leaf polyphenol extract in mixture of maltodextrin and neutral polysaccharides extracted from maca roots. Int J Biol Macromol [Internet]. 2020;150:546–58. Available from: https://doi.org/10.1016/j.ijbiomac.2020.02.091
Polekkad A, Franklin MEE, Pushpadass HA, Battula SN, Rao SBN, Pal DT. Microencapsulation of zinc by spray-drying: Characterisation and fortification [Internet]. Vol. 381, Powder Technology. Elsevier B.V; 2021. 1–16 p. Available from: https://doi.org/10.1016/j.powtec.2020.12.009
Cheng YS, Lu PM, Huang CY, Wu JJ. Encapsulation of lycopene with lecithin and α-tocopherol by supercritical antisolvent process for stability enhancement. J Supercrit Fluids [Internet]. 2017;130:246–52. Available from: http://dx.doi.org/10.1016/j.supflu.2016.12.021
Mansour M, Salah M, Xu X. Effect of microencapsulation using soy protein isolate and gum arabic as wall material on red raspberry anthocyanin stability, characterization, and simulated gastrointestinal conditions. Ultrason Sonochem [Internet]. 2020;63(December 2019):104927. Available from: https://doi.org/10.1016/j.ultsonch.2019.104927
Neves MIL, Desobry-Banon S, Perrone IT, Desobry S, Petit J. Encapsulation of curcumin in milk powders by spray-drying: Physicochemistry, rehydration properties, and stability during storage. Powder Technol. 2019;345:601–7.
Ahmadian Z, Niazmand R, Pourfarzad A. Microencapsulation of Saffron Petal Phenolic Extract: Their Characterization, In Vitro Gastrointestinal Digestion, and Storage Stability. J Food Sci. 2019;84(10):2745–57.
Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res Int. 2007;40(9):1107–21.
Lee YK, Chang YH. Microencapsulation of a maca leaf polyphenol extract in mixture of maltodextrin and neutral polysaccharides extracted from maca roots. Int J Biol Macromol [Internet]. 2020;150:546–58. Available from: https://doi.org/10.1016/j.ijbiomac.2020.02.091
Taguchi Y, Saito N, Uchida A, Tanaka M. Preparation of Thermosensitive Microcapsules Containing Water Soluble Powder by Melting Dispersion Cooling Method. J Encapsulation Adsorpt Sci. 2016;06(03):57–69.
Septevani AA, Sondari D, Ghozali M. Pengaruh Teknik Pengeringan Semprot (Spray Drying) dalam Mikroenkapsulasi Asiaticoside dan Ekstrak Jahe. Indones Jounal Mater Sci. 2013;14(4):248–52.
Peanparkdee M, Iwamoto S, Yamauchi R. Microencapsulation: a Review of Applications in the Food and Pharmaceutical Industries. Rev Agric Sci. 2016;4(0):56–65.
Coatings F. Automotive Paints and Coatings Multilayer Thin Films High Performance Pigments Colloids and Colloid Assemblies. Organization. 2006.
Guo J, Li P, Kong L, Xu B. Microencapsulation of curcumin by spray drying and freeze drying. Lwt [Internet]. 2020;132(July):109892. Available from: https://doi.org/10.1016/j.lwt.2020.109892
Kanha N, Surawang S, Pitchakarn P, Laokuldilok T. Microencapsulation of copigmented anthocyanins using double emulsion followed by complex coacervation: Preparation, characterization and stability. Lwt [Internet]. 2020;133(September):110154. Available from: https://doi.org/10.1016/j.lwt.2020.110154
Karaaslan M, Şengün F, Cansu Ü, Başyiğit B, Sağlam H, Karaaslan A. Gum arabic/maltodextrin microencapsulation confers peroxidation stability and antimicrobial ability to pepper seed oil. Food Chem. 2021;337(July 2020).
Karrar E, Mahdi AA, Sheth S, Mohamed Ahmed IA, Manzoor MF, Wei W, et al. Effect of maltodextrin combination with gum arabic and whey protein isolate on the microencapsulation of gurum seed oil using a spray-drying method. Int J Biol Macromol [Internet]. 2021;171:208–16. Available from: https://doi.org/10.1016/j.ijbiomac.2020.12.045
Vaucher AC dos S, Dias PCM, Coimbra PT, Costa I dos SM, Marreto RN, Dellamora-Ortiz GM, et al. Microencapsulation of fish oil by casein-pectin complexes and gum arabic microparticles: oxidative stabilisation. J Microencapsul [Internet]. 2019;36(5):459–73. Available from: http://dx.doi.org/10.1080/02652048.2019.1646335
Ćujić-Nikolić N, Stanisavljević N, Šavikin K, Kalušević A, Nedović V, Samardžić J, et al. Chokeberry polyphenols preservation using spray drying: effect of encapsulation using maltodextrin and skimmed milk on their recovery following in vitro digestion. J Microencapsul [Internet]. 2019;36(8):693–703. Available from: https://doi.org/10.1080/02652048.2019.1667448
Burhan AM, Abdel-Hamid SM, Soliman ME, Sammour OA. Optimisation of the microencapsulation of lavender oil by spray drying. J Microencapsul [Internet]. 2019;36(3):250–66. Available from: https://doi.org/10.1080/02652048.2019.1620355
Choi YR, Chang YH. Microencapsulation of gallic acid through the complex of whey protein concentrate-pectic polysaccharide extracted from Ulmus davidiana. Food Hydrocoll. 2018;85:222–8.
Zanoni F, Primiterra M, Angeli N, Zoccatelli G. Microencapsulation by spray-drying of polyphenols extracted from red chicory and red cabbage: Effects on stability and color properties. Food Chem [Internet]. 2020;307:125535. Available from: https://doi.org/10.1016/j.foodchem.2019.125535
Kimia J, Tadulako U, Bumi K, Tondo T. AKTIVITAS ANTIOKSIDAN MIKROKAPSUL EKSTRAK ETANOL KAPANG ONCOM MERAH ( Neurospora sp ) [Antioxydant Activity of Microcapsul Etanol Extract of Neurospora sp ] Aini Auliana Amar 1 , Syaiful Bahri 1* , Mappiratu 1. 2018;4(2):145–51.
Zhang R, Zhou L, Li J, Oliveira H, Yang N, Jin W, et al. Microencapsulation of anthocyanins extracted from grape skin by emulsification/internal gelation followed by spray/freeze-drying techniques: Characterization, stability and bioaccessibility. Lwt [Internet]. 2020;123(January):109097. Available from: https://doi.org/10.1016/j.lwt.2020.109097
Gheonea (Dima) I, Aprodu I, Cîrciumaru A, Râpeanu G, Bahrim GE, Stănciuc N. Microencapsulation of lycopene from tomatoes peels by complex coacervation and freeze-drying: Evidences on phytochemical profile, stability and food applications. J Food Eng. 2020;288(March 2020).
Righi da Rosa J, Nunes GL, Motta MH, Fortes JP, Cezimbra Weis GC, Rychecki Hecktheuer LH, et al. Microencapsulation of anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray drying: Characterization, stability and simulated gastrointestinal conditions. Food Hydrocoll. 2019;89:742–8.
Çam M, Içyer NC, Erdoǧan F. Pomegranate peel phenolics: Microencapsulation, storage stability and potential ingredient for functional food development. LWT - Food Sci Technol. 2014;55(1):117–23.
Dadi DW, Emire SA, Hagos AD, Eun JB. Physical and Functional Properties, Digestibility, and Storage Stability of Spray- and Freeze-Dried Microencapsulated Bioactive Products from Moringa stenopetala Leaves Extract. Ind Crops Prod [Internet]. 2020;156(July 2019):112891. Available from: https://doi.org/10.1016/j.indcrop.2020.112891
Jiang T, Liao W, Charcosset C. Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Res Int [Internet]. 2020;132(January):109035. Available from: https://doi.org/10.1016/j.foodres.2020.109035
Kocer Z, Aru B, Sezer UA, Demirel GY, Beker U, Sezer S. Process optimisation, biocompatibility and anti-cancer efficacy of curcumin loaded gelatine microparticles cross-linked with dialdeyhde carboxymethyl cellulose. J Microencapsul [Internet]. 2019;36(5):485–99. Available from: http://dx.doi.org/10.1080/02652048.2019.1646337
Le Priol L, Dagmey A, Morandat S, Saleh K, El Kirat K, Nesterenko A. Comparative study of plant protein extracts as wall materials for the improvement of the oxidative stability of sunflower oil by microencapsulation. Food Hydrocoll [Internet]. 2019;95(January):105–15. Available from: https://doi.org/10.1016/j.foodhyd.2019.04.026
Refbacks
- Saat ini tidak ada refbacks.