Artikel Review: Potensi Kolagen sebagai Bahan Aktif Sediaan Farmasi

Vicania Raisa Rahman, Marline Abdassah Bratadiredja, Nyi Mekar Saptarini, M.Si, Apt.

Abstrak

Kolagen merupakan protein yang terdapat di kulit, tendon, tulang rawan, dan organ dengan kandungan sekitar 30% atau lebih dari protein total. Saat ini, kolagen telah ditemukan mempunyai 29 jenis dengan struktur dan urutan asam amino yang berbeda. Kolagen mempunyai karakteristik fisikokimia yang baik yaitu bersifat biokompatibel, biodegradable, antigenisitas yang rendah, dan nontoksik dengan berbagai aktivitas yang dapat mendukungnya sebagai sediaan farmasi. Review artikel dilakukan untuk mengumpulkan informasi tentang kolagen yang memiliki berbagai aktivitas sebagai sediaan farmasi. Artikel dikumpulkan dari 107 artikel penelitian. Artikel ini membahas tentang potensi kolagen sebagai sediaan farmasi untuk kesehatan. Hasil yang didapatkan adalah kolagen memiliki banyak peran dalam tubuh sehingga memiliki banyak aktivitas untuk kesehatan, terutama sebagai antiinflamasi, menyembuhkan luka, kondroprotektif, pertumbuhan dan homeostasis kulit, tendon, tulang, otot, dan saraf, dan antikanker. Kolagen sangat mempengaruhi tubuh dan dapat dijadikan sediaan farmasi sebagai suplemen, kosmetik, ataupun scaffolding material untuk kesehatan.

Kata Kunci

Asam amino, kesehatan, kolagen, sediaan farmasi.

Teks Lengkap:

PDF

Referensi

Sinthusamran S, Benjakul S, Kishimura H. Comparative study on molecular characteristics of acid soluble collagens from skin and swim bladder of seabass (Lates calcarifer). Food Chemistry [Internet]. 2013;138(4):2435–41. Available from: http://dx.doi.org/10.1016/j.foodchem. 2012.11.136

Arseni L, Lombardi A, Orioli D. From structure to phenotype: impact of collagen alterations on human health. International Journal of Molecular Sciences. 2018;19(5).

Kumbar SG, Laurencin C, Deng M, editors. Natural and Synthetic Biomedical Polymers [Internet]. USA: Elsevier Science; 2014. Available from: https://books.google.co.id/books?id=QX58AQAAQBAJ

Fidler AL, Boudko SP, Rokas A, Hudson BG. The triple helix of collagens - an ancient protein structure that enabled animal multicellularity and tissue evolution. Journal of Cell Science. 2018;131(7).

Liu D, Liang L, Regenstein JM, Zhou P. Extraction and characterisation of pepsin-solubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp (Hypophthalmichthys nobilis). Food Chemistry [Internet]. 2012;133(4):1441–8. Available from: http://dx.doi.org/10.1016/j.foodchem.2012.02.032

Rodríguez MIA, Barroso LGR, Sánchez ML. Collagen: a review on its sources and potential cosmetic applications. Journal of Cosmetic Dermatology. 2018;17(1):20–6.

Park S, Kang S, Lee WJ. Menopause, ultraviolet exposure, and low water intake potentially interact with the genetic variants related to collagen metabolism involved in skin wrinkle risk in middle-aged women. International Journal of Environmental Research and Public Health. 2021;18(4):1–12.

Overbeek SA, Braber S, Koelink PJ, Henricks PAJ, Mortaz E, LoTam Loi AT, et al. Cigarette smoke-induced collagen destruction; key to chronic neutrophilic airway inflammation? PLoS ONE. 2013;8(1).

Snedeker JG, Gautieri A. The role of collagen crosslinks in ageing and diabetes - the good, the bad, and the ugly. Muscles, Ligaments and Tendons Journal. 2014;4(3):303–8.

Cheng Q, Zhang X, Jiang J, Zhao G, Wang Y, Xu Y, et al. Postmenopausal iron overload exacerbated bone loss by promoting the degradation of type i collagen. BioMed Research International. 2017;2017.

Zdzieblik D, Oesser S, Baumstark MW, Gollhofer A, König D. Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: a randomised controlled trial. British Journal of Nutrition. 2015;114(8):1237–45.

Hosseininia S, Lindberg LR, Dahlberg LE. Cartilage collagen damage in hip osteoarthritis similar to that seen in knee osteoarthritis; a case-control study of relationship between collagen, glycosaminoglycan and cartilage swelling. BMC Musculoskeletal Disorders. 2013;14.

Urciuolo A, Quarta M, Morbidoni V, Gattazzo F, Molon S, Grumati P, et al. Collagen VI regulates satellite cell self-renewal and muscle regeneration. Nature Communications [Internet]. 2013;4:1–13. Available from: http://dx.doi.org/10.1038/ncomms2964

Borumand M, Sibilla S. Daily consumption of the collagen supplement pure gold collagen® reduces visible signs of aging. Clinical Interventions in Aging. 2014;9:1747–58.

Chi C-F, Cao Z-H, Wang B, Hu F-Y, Li Z-R, Zhang B. Antioxidant and functional properties of collagen hydrolysates from spanish mackerel skin as influenced by average molecular weight. Molecules. 2014;19(8):11211–30.

Albu MG, Ferdes M, Kaya DA, Ghica M v., Titorencu I, Popa L, et al. Collagen wound dressings with anti-inflammatory activity. Molecular Crystals and Liquid Crystals. 2012;555:271–9.

Petäistö T, Vicente D, Mäkelä KA, Finnilä MA, Miinalainen I, Koivunen J, et al. Lack of collagen XVIII leads to lipodystrophy and perturbs hepatic glucose and lipid homeostasis. Journal of Physiology. 2020;598(16):3373–93.

Wu B, Chen H, Shen J, Ye M. Cost-effectiveness of adding rh-endostatin to first-line chemotherapy in patients with advanced non-small-cell lung cancer in china. Clinical Therapeutics. 2011;33(10):1446–55.

Ferreira AM, Gentile P, Chiono V, Ciardelli G. Collagen for bone tissue regeneration. Acta Biomaterialia [Internet]. 2012;8(9):3191–200. Available from: http://dx.doi.org/10.1016/j.actbio.2012.06.014

Hashim P, Mohd Ridzwan MS, Bakar J, Mat Hashim D. Collagen in food and beverage industries. International Food Research Journal. 2015;22(1):1–8.

Lin K, Zhang D, Macedo MH, Cui W, Sarmento B, Shen G. Advanced collagen-based biomaterials for regenerative biomedicine. Advanced Functional Materials. 2019;29(3):1–16.

Subhan F, Hussain Z, Tauseef I, Shehzad A, Wahid F. A review on recent advances and applications of fish collagen. Critical Reviews in Food Science and Nutrition [Internet]. 2020;61(6):1–11. Available from: https://doi.org/10.1080/10408398.2020.1751585

Domb AJ, Kumar N, Ezra A, editors. Biodegradable polymers in clinical use and clinical development [Internet]. USA: Wiley; 2011. Available from: https://books.google.co.id/books?id=LUOQu6%5C_kLZQC

Dar QA, Schott EM, Catheline SE, Maynard RD, Liu Z, Kamal F, et al. Daily oral consumption of hydrolyzed type 1 collagen is chondroprotective and antiinflammatory in murine posttraumatic osteoarthritis. PLoS ONE. 2017;12(4):1–24.

Nakchum L, Kim SM. Preparation of squid skin collagen hydrolysate as an antihyaluronidase, antityrosinase, and antioxidant agent. Preparative Biochemistry and Biotechnology. 2016;46(2):123–30.

Blotta RM, Costa S dos S, Trindade EN, Meurer L, Maciel-Trindade MR. Collagen I and III in women with diastasis recti. Clinics. 2018;73(5):1–5.

Palachur D, Rao KVP, Murthy KR v., Kishore DT, Reddy MN, Bhupathi A. A comparative evaluation of bovine-derived xenograft (Bio-Oss Collagen) and type i collagen membrane (Bio-Gide) with bovine-derived xenograft (Bio-Oss Collagen) and fibrin fibronectin sealing system (TISSEEL) in the treatment of intrabony defects: A clini. Journal of Indian Society of Periodontology. 2014;18(3):336–43.

Oropallo AR. Use of native type i collagen matrix plus polyhexamethylene biguanide for chronic wound treatment. Plastic and Reconstructive Surgery - Global Open. 2019;7(1):1–6.

Shirachi I, Gotoh M, Mitsui Y, Yamada T, Nakama K, Kojima K, et al. Collagen production at the edge of ruptured rotator cuff tendon is correlated with postoperative cuff integrity. Arthroscopy - Journal of Arthroscopic and Related Surgery [Internet]. 2011;27(9):1173–9. Available from: http://dx.doi.org/10.1016/j.arthro.2011.03.078

Bakilan F, Armagan O, Ozgen M, Tascioglu F, Bolluk O, Alatas O. Effects of native type II collagen treatment on knee osteoarthritis: A randomized controlled trial. Eurasian Journal of Medicine. 2016;48(2):95–101.

Tamaddon M, Burrows M, Ferreira SA, Dazzi F, Apperley JF, Bradshaw A, et al. Monomeric, porous type II collagen scaffolds promote chondrogenic differentiation of human bone marrow mesenchymal stem cells in vitro. Scientific Reports [Internet]. 2017;7:1–10. Available from: http://dx.doi.org/10.1038/srep43519

Dai M, Sui B, Xue Y, Liu X, Sun J. Cartilage repair in degenerative osteoarthritis mediated by squid type II collagen via immunomodulating activation of M2 macrophages, inhibiting apoptosis and hypertrophy of chondrocytes. Biomaterials [Internet]. 2018;180:91–103. Available from: https://doi.org/10.1016/j.biomaterials.2018.07.011

Volk SW, Wang Y, Mauldin EA, Liechty KW, Adams SL. Diminished type III collagen promotes myofibroblast differentiation and increases scar deposition in cutaneous wound healing. Cells Tissues Organs. 2011;194(1):25–37.

Cheng W, Yan-Hua R, Fang-Gang N, Guo-An Z. The content and ratio of type I and III collagen in skin differ with age and injury. African Journal of Biotechnology. 2011;10(13):2524–9.

Volk SW, Shah SR, Cohen AJ, Wang Y, Brisson BK, Vogel LK, et al. Type III collagen regulates osteoblastogenesis and the quantity of trabecular bone. Calcified Tissue International. 2014;94(6):621–31.

Wang C, Brisson BK, Terajima M, Li Q, Hoxha K, Han B, et al. Type III collagen is a key regulator of the collagen fibrillar structure and biomechanics of articular cartilage and meniscus. Matrix Biology [Internet]. 2020;85–86:47–67. Available from: https://doi.org/10.1016/j.matbio.2019.10.001

Heo Y, Shin YM, Lee Y bin, Lim YM, Shin H. Effect of immobilized collagen type IV on biological properties of endothelial cells for the enhanced endothelialization of synthetic vascular graft materials. Colloids and Surfaces B: Biointerfaces [Internet]. 2015;134:196–203. Available from: http://dx.doi.org/10.1016/j.colsurfb.2015.07.003

Veidal SS, Karsdal MA, Nawrocki A, Larsen MR, Dai Y, Zheng Q, et al. Assessment of proteolytic degradation of the basement membrane: A fragment of type IV collagen as a biochemical marker for liver fibrosis. Fibrogenesis and Tissue Repair. 2011;4(1):1–11.

Karsdal M, editor. Biochemistry of Collagens, Laminins and Elastin: Structure, Function and Biomarkers [Internet]. Belanda: Elsevier Science; 2016. Available from: https://books.google.co.id/books?id=BXqLCwAAQBAJ

Sun M, Chen S, Adams SM, Florer JB, Liu H, Kao WWY, et al. Collagen V is a dominant regulator of collagen fibrillogenesis: Dysfunctional regulation of structure and function in a corneal-stroma-specific Col5a1-null mouse model. Journal of Cell Science. 2011;124(23):4096–105.

Wenstrup RJ, Smith SM, Florer JB, Zhang G, Beason DP, Seegmiller RE, et al. Regulation of collagen fibril nucleation and initial fibril assembly involves coordinate interactions with collagens V and XI in developing tendon. Journal of Biological Chemistry. 2011;286(23):20455–65.

Smeriglio P, Dhulipala L, Lai JH, Goodman SB, Dragoo JL, Smith RL, et al. Collagen VI enhances cartilage tissue generation by stimulating chondrocyte proliferation. Tissue Engineering Part A [Internet]. 2015;21(3–4):1–41. Available from: http://www.statistik.at/KDBWeb/kdb.do?FAM=WISS&&NAV=EN&&KDBtoken=null

Theocharidis G, Drymoussi Z, Kao AP, Barber AH, Lee DA, Braun KM, et al. Type VI collagen regulates dermal matrix assembly and fibroblast motility. Journal of Investigative Dermatology [Internet]. 2016;136(1):74–83. Available from: http://dx.doi.org/10.1038/jid.2015.352

Llacua LA, Hoek A, de Haan BJ, de Vos P. Collagen type VI interaction improves human islet survival in immunoisolating microcapsules for treatment of diabetes. Islets [Internet]. 2018;10(2):60–8. Available from: https://doi.org/10.1080/19382014.2017.1420449

Izu Y, Ansorge HL, Zhang G, Soslowsky LJ, Bonaldo P, Chu ML, et al. Dysfunctional tendon collagen fibrillogenesis in collagen VI null mice. Matrix Biology [Internet]. 2011;30(1):53–61. Available from: http://dx.doi.org/10.1016/j.matbio.2010.10.001

Grumati P, Coletto L, Schiavinato A, Castagnaro S, Bertaggia E, Sandri M, et al. Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy. 2011;7(12):1415–23.

Christensen SE, Coles JM, Zelenski NA, Furman BD, Leddy HA, Zauscher S, et al. Altered trabecular bone structure and delayed cartilage degeneration in the knees of collagen vi null mice. PLoS ONE. 2012;7(3).

Chen P, Cescon M, Bonaldo P. Lack of collagen VI promotes wound-induced hair growth. Journal of Investigative Dermatology [Internet]. 2015;135(10):2358–67. Available from: http://dx.doi.org/10.1038/jid.2015.187

Chen P, Cescon M, Zuccolotto G, Nobbio L, Colombelli C, Filaferro M, et al. Collagen VI regulates peripheral nerve regeneration by modulating macrophage recruitment and polarization. Acta Neuropathologica. 2015;129(1):97–113.

Cescon M, Chen P, Castagnaro S, Gregorio I, Bonaldo P. Lack of collagen VI promotes neurodegeneration by impairing autophagy and inducing apoptosis during aging. Aging. 2016;8(5):1083–101.

Lettmann S, Bloch W, Maaß T, Niehoff A, Schulz JN, Eckes B, et al. Col6a1 null mice as a model to study skin phenotypes in patients with collagen VI related myopathies: expression of classical and novel collagen VI variants during wound healing. PLoS ONE. 2014;9(8):3–11.

Abdillahi SM, Maaß T, Kasetty G, Strömstedt AA, Baumgarten M, Tati R, et al. Collagen VI contains multiple host defense peptides with potent in vivo activity. The Journal of Immunology. 2018;201(3):1007–20.

Jung JP, Lin WH, Riddle MJ, Tolar J, Ogle BM. A 3D in vitro model of the dermoepidermal junction amenable to mechanical testing. Journal of Biomedical Materials Research - Part A. 2018;106(12):3231–8.

Woodley DT, Wang X, Amir M, Hwang B, Remington J, Hou Y, et al. Intravenously injected recombinant human type VII collagen homes to skin wounds and restores skin integrity of dystrophic epidermolysis bullosa. Journal of Investigative Dermatology. 2013;133(7):1910–3.

Wang X, Ghasri P, Amir M, Hwang B, Hou Y, Khilili M, et al. Topical application of recombinant type VII collagen incorporates into the dermal-epidermal junction and promotes wound closure. Molecular Therapy. 2013;21(7):1335–44.

Umemoto H, Akiyama M, Domon T, Nomura T, Shinkuma S, Ito K, et al. Type VII collagen deficiency causes defective tooth enamel formation due to poor differentiation of ameloblasts. American Journal of Pathology. 2012;181(5):1659–71.

Lopes J, Adiguzel E, Gu S, Liu SL, Hou G, Heximer S, et al. Type VIII collagen mediates vessel wall remodeling after arterial injury and fibrous cap formation in atherosclerosis. American Journal of Pathology [Internet]. 2013;182(6):2241–53. Available from: http://dx.doi.org/10.1016/j.ajpath.2013.02.011

Skrbic B, Engebretsen KVT, Strand ME, Lunde IG, Herum KM, Marstein HS, et al. Lack of collagen VIII reduces fibrosis and promotes early mortality and cardiac dilatation in pressure overload in mice. Cardiovascular Research. 2015;106(1):32–42.

Parsons P, Gilbert SJ, Vaughan-Thomas A, Sorrell DA, Notman R, Bishop M, et al. Type IX collagen interacts with fibronectin providing an important molecular bridge in articular cartilage. Journal of Biological Chemistry. 2011;286(40):34986–97.

Gu J, Lu Y, Li F, Qiao L, Wang Q, Li N, et al. Identification and characterization of the novel Col10a1 regulatory mechanism during chondrocyte hypertrophic differentiation. Cell Death and Disease. 2014;5(10):1–11.

Coghlan RF, Oberdorf JA, Sienko S, Aiona MD, Boston BA, Connelly KJ, et al. A degradation fragment of type X collagen is a real-time marker for bone growth velocity. Science Translational Medicine. 2017;9(419).

Smith SM, Melrose J. Type XI collagen–perlecan–HS interactions stabilise the pericellular matrix of annulus fibrosus cells and chondrocytes providing matrix stabilisation and homeostasis. Journal of Molecular Histology [Internet]. 2019;50(3):285–94. Available from: https://doi.org/10.1007/s10735-019-09823-1

Li A, Wei Y, Hung C, Vunjak-Novakovic G. Chondrogenic properties of collagen type XI, a component of cartilage extracellular matrix. Biomaterials [Internet]. 2018;173:47–57. Available from: https://doi.org/10.1016/j.biomaterials.2018.05.004

Hemmavanh C, Koch M, Birk DE, Espana EM. Abnormal corneal endothelial maturation in collagen XII and XIV Null mice. Investigative Ophthalmology and Visual Science. 2013;54(5):3297–308.

Chiquet M, Birk DE, Bönnemann CG, Koch M. Collagen XII: protecting bone and muscle integrity by organizing collagen fibrils. International Journal of Biochemistry and Cell Biology [Internet]. 2014;53:51–4. Available from: http://dx.doi.org/10.1016/j.biocel.2014.04.020

Zou Y, Zwolanek D, Izu Y, Gandhy S, Schreiber G, Brockmann K, et al. Recessive and dominant mutations in COL12A1 cause a novel EDS/myopathy overlap syndrome in humans and mice. Human Molecular Genetics. 2014;23(9):2339–52.

Izu Y, Adams SM, Connizzo BK, Beason DP, Soslowsky LJ, Koch M, et al. Collagen XII mediated cellular and extracellular mechanisms regulate establishment of tendon structure and function. Matrix Biology [Internet]. 2021;95:52–67. Available from: https://doi.org/10.1016/j.matbio.2020.10.004

Marro J, Pfefferli C, de Charles ASP, Bise T, Jaźwiñska A. Collagen XII contributes to epicardial and connective tissues in the zebrafish heart during ontogenesis and regeneration. PLoS ONE. 2016;11(10):1–23.

Härönen H, Zainul Z, Naumenko N, Sormunen R, Miinalainen I, Shakirzyanova A, et al. Correct expression and localization of collagen XIII are crucial for the normal formation and function of the neuromuscular system. European Journal of Neuroscience. 2019;49(11):1491–511.

Härönen H, Zainul Z, Tu H, Naumenko N, Sormunen R, Miinalainen I, et al. Collagen XIII secures pre- and postsynaptic integrity of the neuromuscular synapse. Human Molecular Genetics. 2017;26(11):2076–90.

Koivunen J, Tu H, Kemppainen A, Anbazhagan P, Finnilä MA, Saarakkala S, et al. Integrin α11β1 is a receptor for collagen XIII. Cell and Tissue Research. 2020;383(3):1135–53.

Luo Y, Sinkeviciute D, He Y, Karsdal M, Henrotin Y, Mobasheri A, et al. The minor collagens in articular cartilage. Protein and Cell. 2017;8(8):560–72.

Agarwal P, Zwolanek D, Keene DR, Schulz JN, Blumbach K, Heinegård D, et al. Collagen XII and XIV, new partners of cartilage oligomeric matrix protein in the skin extracellular matrix suprastructure. Journal of Biological Chemistry. 2012;287(27):22549–59.

Freise C, Bobb V, Querfeld U. Collagen XIV and a related recombinant fragment protect human vascular smooth muscle cells from calcium-/phosphate-induced osteochondrocytic transdifferentiation. Experimental Cell Research [Internet]. 2017;358(2):242–52. Available from: http://dx.doi.org/10.1016/j.yexcr.2017.06.018

Kong R, Liu H, Shi Y, Man Q, Liu S. COL14A1 promotes self-renewal of human liver cancer stem cells through activation of ERK signaling. Journal of Bio-X Research. 2021;4(1):10–7.

Tao G, Levay AK, Peacock JD, Huk DJ, Both SN, Purcell NH, et al. Collagen XIV is important for growth and structural integrity of the myocardium. Journal of Molecular and Cellular Cardiology [Internet]. 2012;53(5):626–38. Available from: http://dx.doi.org/10.1016/j.yjmcc.2012.08.002

Lisignoli G, Lambertini E, Manferdini C, Gabusi E, Penolazzi L, Paolella F, et al. Collagen type XV and the ‘osteogenic status.’ Journal of Cellular and Molecular Medicine. 2017;21(9):2236–44.

Clementz AG, Mutolo MJ, Leir SH, Morris KJ, Kucybala K, Harris H, et al. Collagen XV inhibits epithelial to mesenchymal transition in pancreatic adenocarcinoma cells. PLoS ONE. 2013;8(8):1–10.

Durgin BG, Cherepanova OA, Gomez D, Karaoli T, Alencar GF, Butcher JT, et al. Smooth muscle cell-specific deletion of col15α1 unexpectedly leads to impaired development of advanced atherosclerotic lesions. American Journal of Physiology - Heart and Circulatory Physiology. 2017;312(5).

Guillon E, Bretaud S, Ruggiero F. Slow muscle precursors lay down a collagen XV matrix fingerprint to guide motor axon navigation. Journal of Neuroscience. 2016;36(9):2663–76.

Rygh CB, Løkka G, Heljasvaara R, Taxt T, Pavlin T, Sormunen R, et al. Image-based assessment of microvascular function and structure in collagen XV- and XVIII-deficient mice. Journal of Physiology. 2014;592(2):325–36.

Tanimura S, Tadokoro Y, Inomata K, Binh NT, Nishie W, Yamazaki S, et al. Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell [Internet]. 2011;8(2):177–87. Available from: http://dx.doi.org/10.1016/j.stem.2010.11.029

Yodsurang V, Tanikawa C, Miyamoto T, Lo PHY, Hirata M, Matsuda K. Identification of a novel p53 target, COL17A1, that inhibits breast cancer cell migration and invasion. Oncotarget. 2017;8(34):55790–803.

Hurskainen T, Moilanen J, Sormunen R, Franzke CW, Soininen R, Loeffek S, et al. Transmembrane collagen XVII is a novel component of the glomerular filtration barrier. Cell and Tissue Research. 2012;348(3):579–88.

Kiritsi D, Kern JS, Schumann H, Kohlhase J, Has C, Bruckner-Tuderman L. Molecular mechanisms of phenotypic variability in junctional epidermolysis bullosa. Journal of Medical Genetics. 2011;48(7):450–7.

Duncan MB, Yang C, Tanjore H, Boyle PM, Keskin D, Sugimoto H, et al. Type XVIII collagen is essential for survival during acute liver injury in mice. DMM Disease Models and Mechanisms. 2013;6(4):942–51.

Aikio M, Hurskainen M, Brideau G, Hägg P, Sormunen R, Heljasvaara R, et al. Collagen XVIII short isoform is critical for retinal vascularization, and overexpression of the Tsp-1 domain affects eye growth and cataract formation. Investigative Ophthalmology and Visual Science. 2013;54(12):7450–62.

Kivinen N, Felszeghy S, Kinnunen AI, Setälä N, Aikio M, Kinnunen K, et al. Absence of collagen XVIII in mice causes age-related insufficiency in retinal pigment epithelium proteostasis. Biogerontology. 2016;17(4):749–61.

Kim SH, Kim YS, Lee SY, Kim KH, Lee YM, Kim WK, et al. Gene expression profile in mesenchymal stem cells derived from dental tissues and bone marrow. Journal of Periodontal and Implant Science. 2011;41(4):192–200.

Oudart JB, Monboisse JC, Maquart FX, Brassart B, Brassart-Pasco S, Ramont L. Type XIX collagen: A new partner in the interactions between tumor cells and their microenvironment. Matrix Biology [Internet]. 2017;57–58:169–77. Available from: http://dx.doi.org/10.1016/j.matbio.2016.07.010

Su J, Cole J, Fox MA. Loss of interneuron-derived collagen XIX leads to a reduction in perineuronal nets in the mammalian telencephalon. ASN Neuro. 2017;9(1).

Misawa K, Kanazawa T, Imai A, Endo S, Mochizuki D, Fukushima H, et al. Prognostic value of type XXII and XXIV collagen mRNA expression in head and neck cancer patients. Molecular and Clinical Oncology. 2014;2(2):285–91.

Jakobsen JR, Mackey AL, Knudsen AB, Koch M, Kjær M, Krogsgaard MR. Composition and adaptation of human myotendinous junction and neighboring muscle fibers to heavy resistance training. Scandinavian Journal of Medicine and Science in Sports. 2017;27(12):1547–59.

Feng C, Chan WCW, Lam Y, Wang X, Chen P, Niu B, et al. Lgr5 and Col22a1 mark progenitor cells in the lineage toward juvenile articular chondrocytes. Stem Cell Reports [Internet]. 2019;13(4):713–29. Available from: https://doi.org/10.1016/j.stemcr.2019.08.006

Charvet B, Guiraud A, Malbouyres M, Zwolanek D, Guillon E, Bretaud S, et al. Knockdown of col22a1 gene in zebrafish induces a muscular dystrophy by disruption of the myotendinous junction. Development. 2013;140(22):4602–13.

Ton Q v., Leino D, Mowery SA, Bredemeier NO, Lafontant PJ, Lubert A, et al. Collagen COL22A1 maintains vascular stability and mutations in COL22A1 are potentially associated with intracranial aneurysms. DMM Disease Models and Mechanisms. 2018;11(12).

Veit G, Zwolanek D, Eckes B, Niland S, Käpylä J, Zweers MC, et al. Collagen XXIII, Novel Ligand for Integrin α2β1 in the Epidermis. Vol. 286, The Journal of biological chemistry. 2011. p. 27804–13.

Wang W, Olson D, Liang G, Franceschi RT, Li C, Wang B, et al. Collagen XXIV (Col24α1) promotes osteoblastic differentiation and mineralization through TGF-β/Smads signaling pathway.pdf. Int J Biol Sci. 2012;8(10):1310–1322.

Gonçalves TJM, Boutillon F, Lefebvre S, Goffin V, Iwatsubo T, Wakabayashi T, et al. Collagen XXV promotes myoblast fusion during myogenic differentiation and muscle formation. Scientific Reports. 2019;9(1):1–12.

Munezane H, Oizumi H, Wakabayashi T, Nishio S, Hirasawa T, Sato T, et al. Roles of collagen XXV and its putative receptors PTPσ/δ in intramuscular motor innervation and congenital cranial dysinnervation disorder. Cell Reports [Internet]. 2019;29(13):4362-4376.e6. Available from: https://doi.org/10.1016/j.celrep.2019.11.112

Grumezescu AM, editor. Nanobiomaterials in Soft Tissue Engineering: Applications of Nanobiomaterials [Internet]. Belanda: Elsevier Science; 2016. Available from: https://books.google.co.id/books?id=NpNCCQAAQBAJ

Plumb DA, Ferrara L, Torbica T, Knowles L, Mironov A, Kadler KE, et al. Collagen XXVII organises the pericellular matrix in the growth plate. PLoS ONE. 2011;6(12).

Schiller HB, Fernandez IE, Burgstaller G, Schaab C, Scheltema RA, Schwarzmayr T, et al. Time‐ and compartment‐resolved proteome profiling of the extracellular niche in lung injury and repair. Molecular Systems Biology. 2015;11(7):819.

Griffiths C, Barker J, Bleiker TO, Chalmers R, Creamer D, editors. Rook’s Textbook of Dermatology [Internet]. Jerman: Wiley; 2016. Available from: https://books.google.co.id/books?id=EyypCwAAQBAJ

Plager DA, Torres SMF, Koch SN, Kita H. Gene transcription abnormalities in canine atopic dermatitis and related human eosinophilic allergic diseases. Veterinary Immunology and Immunopathology [Internet]. 2012;149(1–2):136–42. Available from: http://dx.doi.org/10.1016/j.vetimm.2012.06.003

Widayati E. Oxidasi biologi, radikal bebas, dan antioxidant. Majalah Ilmiah Sultan Agung. 2012;50(128).

Jain P, Pandey R, Shukla SS. Inflammation: Natural Resources and Its Applications [Internet]. India: Springer India; 2014. Available from: https://books.google.co.id/books?id=OXq1BQAAQBAJ

Felson DT, Schaible HG, editors. Pain in Osteoarthritis [Internet]. Jerman: Wiley; 2010. Available from: https://books.google.co.id/books?id=DFTjbbMizRYC

Oguntibeju O, editor. Antioxidant-antidiabetic Agents and Human Health [Internet]. Kroasia: IntechOpen; 2014. Available from: https://books.google.co.id/books?id=MyqhDwAAQBAJ

Adjei AA, Buolamwini JK, editors. Novel Anticancer Agents: Strategies for Discovery and Clinical Testing [Internet]. Belanda: Elsevier Science; 2011. Available from: https://books.google.co.id/books?id=75t2-XiMJgMC

Ficai A, Grumezescu AM, editors. Nanostructures for Antimicrobial Therapy [Internet]. Belanda: Elsevier Science; 2017. Available from: https://books.google.co.id/books?id=wM78DAAAQBAJ

Giampapa VC. The Principles and Practice of Antiaging Medicine for The Clinical Physician [Internet]. Denmark: River Publishers; 2013. Available from: https://books.google.co.id/books?id=GW1N76tPlwUC

Juncan AM, Lung C. Formulation and optimizing of a anti-aging cosmetic cream. Studia UBB Physica [Internet]. 2016;61(LXI):101–10. Available from: http://studia.ubbcluj.ro/download/pdf/physica/2016_2/11.pdf

Refbacks

  • Saat ini tidak ada refbacks.