Penggunaan Polimer Golongan Polisakarida untuk Enkapsulasi Zat Aktif dengan Perbedaan Sifat Keasaman

Siska Sari Marvita, Anis Yohana Chaerunisaa, Dolih Gozali

Abstrak

Obat merupakan zat aktif yang bersifat asam atau basa. Beberapa zat aktif memiliki stabilitas yang rendah dan pelepasan obat yang kurang terkontrol. Masalah ini dapat diatasi dengan mengenkapsulasi zat aktif tersebut menggunakan polimer bersifat biodegradable, salah satunya polimer golongan polisakarida yang telah banyak digunakan seperti alginat, kitosan, pektin, dan selulosa. Enkapsulasi zat aktif telah menghasilkan banyak sifat penting seperti penghantaran obat lepas lambat atau terkontrol, peningkatan stabilitas, dan peningkatan bioavailabilitas sehingga dapat meningkatkan kesesuaian untuk aplikasinya. Artikel ini dibuat dengan menggunakan metode pencarian referensi secara online yang berasal dari free database “sciencedirect.com” dari tahun 2012 – 2021. Artikel ini akan membahas beberapa penggunaan polimer golongan polisakarida untuk ekapsulasi zat aktif dengan perbedaan sifat keasaman. Berdasarkan beberapa data penelitian yang terkumpul, membuktikan keberhasilan polimer polisakarida dalam mengenkapsulasi zat aktif yang bersifat asam dan basa. Parameter keberhasilan yang dinilai dalam artikel ini untuk enkapsulasi zat aktif adalah nilai efisiensi enkapsulasi dan pelepasan obat. Zat aktif yang bersifat asam cenderung memiliki efisiensi enkapsulasi yang lebih tinggi daripada zat aktif bersifat basa. Namun, tidak memberikan perbedaan pelepasan obat pada kondisi cairan lambung dan cairan usus. Zat aktif dengan sifat keasaman yang berbeda sama-sama memiliki pelepasan obat tertinggi pada kondisi basa. 

Kata Kunci

Alginat; enkapsulasi zat aktif; kitosan; pektin; selulosa

Teks Lengkap:

PDF

Referensi

Farmakope Indonesia Edisi VI 2020 Kementrian Kesehatan Republik Indonesia. Jakarta: Kementrian Kesehatan RI; 2020.

Alborzi S, Lim LT, Kakuda Y. Release of folic acid from sodium alginate-pectin- poly(ethylene oxide) electrospun fibers under invitro conditions. LWT - Food Sci Technol 2014;59(1):383–8.

Zhang M, Sun R, Xia Q. An ascorbic acid delivery system based on (W1/O/W2) double emulsions encapsulated by Ca-alginate hydrogel beads. J Drug Deliv Sci Technol 2020;60.

Akhlaghi SP, Berry RM, Tam KC. Modified Cellulose Nanocrystal for Vitamin C Delivery. AAPS PharmSciTech 2015;16(2):306–14.

AhirraoS,GideP,ShrivastavB,SharmaP.Extendedreleaseoftheophyllinethrough sodium alginate hydrogel beads: Effect of glycerol on entrapment efficiency, drug release. Part Sci Technol 2014;32(2):105–11.

Camacho DH, Uy SJY, Cabrera MJF, Lobregas MOS, Fajardo TJMC. Encapsulation of folic acid in copper-alginate hydrogels and it’s slow in vitro release in physiological pH condition. Food Res Int 2019;119:15–22.

Tsung J, Burgess DJ. Biodegradable polymers in drug delivery systems. In: Fundamentals and Applications of Controlled Release Drug Delivery. Springer US; 2012. page 107–23.

Pamunuwa G, Anjalee N, Kukulewa D, Edirisinghe C, Shakoor F, Karunaratne DN. Tailoring of release properties of folic acid encapsulated nanoparticles via changing alginate and pectin composition in the matrix. Carbohydr Polym Technol Appl 2020;1:100008.

Baek J, Ramasamy M, Willis NC, Kim DS, Anderson WA, Tam KC. Encapsulation and controlled release of vitamin C in modified cellulose nanocrystal/chitosan nanocapsules. Curr Res Food Sci 2021;4:215–23.

Khan YA, Ozaltin K, Bernal-Ballen A, Di Martino A. Chitosan-alginate hydrogels for simultaneous and sustained releases of ciprofloxacin, amoxicillin and vancomycin for combination therapy. J Drug Deliv Sci Technol 2021;61.

Cerchiara T, Abruzzo A, Di Cagno M, Bigucci F, Bauer-Brandl A, Parolin C, et al. Chitosan based micro- and nanoparticles for colon-targeted delivery of vancomycin prepared by alternative processing methods. Eur J Pharm Biopharm 2015;92:112–9.

1Almurisi SH, Doolaanea AA, Akkawi ME, Chatterjee B, Sarker MZI. Taste masking of paracetamol encapsulated in chitosan-coated alginate beads. J Drug Deliv Sci Technol 2020;56.

Barkhordari S, Yadollahi M. Carboxymethyl cellulose capsulated layered double hydroxides/drug nanohybrids for Cephalexin oral delivery. Appl Clay Sci 2016;121- 122:77–85.

Kundu D, Banerjee T. Development of microcrystalline cellulose based hydrogels for the in vitro delivery of Cephalexin. Heliyon 2020;6(1).

Samanta HS, Ray SK. Controlled release of tinidazole and theophylline from chitosan based composite hydrogels. Carbohydr Polym 2014;106(1):109–20.

Wang S ya, Li J, Zhou Y, Li D qiang, Du G ming. Chemical cross-linking approach for prolonging diclofenac sodium release from pectin-based delivery system. Int J Biol Macromol 2019;137:512–20.

Dutta RK, Sahu S. Development of diclofenac sodium loaded magnetic nanocarriers of pectin interacted with chitosan for targeted and sustained drug delivery. Colloids Surfaces B Biointerfaces 2012;97:19–26.

Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv. Drug Deliv. Rev.2013;65(9):1148–71.

Cerchiara T, Abruzzo A, Parolin C, Vitali B, Bigucci F, Gallucci MC, et al. Microparticles based on chitosan/carboxymethylcellulose polyelectrolyte complexes for colon delivery of vancomycin. Carbohydr Polym 2016;143:124–30.

Alqahtani FY, Aleanizy FS, Tahir E El, Alquadeib BT, Alsarra IA, Alanazi JS, et al. Preparation, characterization, and antibacterial activity of diclofenac-loaded chitosan nanoparticles. Saudi Pharm J 2019;27(1):82–7.

Yuen CWM, Yip J, Liu L, Cheuk K, Kan CW, Cheung HC, et al. Chitosan microcapsules loaded with either miconazole nitrate or clotrimazole, prepared via emulsion technique. Carbohydr Polym 2012;89(3):795–801.

Gull N, Khan SM, Butt OM, Islam A, Shah A, Jabeen S, et al. Inflammation targeted chitosan-based hydrogel for controlled release of diclofenac sodium. Int J Biol Macromol 2020;162:175–87.

Tan LS, Tan HL, Deekonda K, Wong YY, Muniyandy S, Hashim K, et al. Fabrication of radiation cross-linked diclofenac sodium loaded carboxymethyl sago pulp/chitosan hydrogel for enteric and sustained drug delivery. Carbohydr Polym Technol Appl 2021;2:100084.

Sun X, Shen J, Yu D, Ouyang X kun. Preparation of pH-sensitive Fe 3 O 4 @C/carboxymethyl cellulose/chitosan composite beads for diclofenac sodium delivery. Int J Biol Macromol 2019;127:594–605.

Hanna DH, Saad GR. Encapsulation of ciprofloxacin within modified xanthan gum- chitosan based hydrogel for drug delivery. Bioorg Chem 2019;84:115–24.

Tong QP, Sun HS, Wang J hua, Wang Y, Peng Y, Jiang M, et al. Preparation and characterization of Berberine Hydrochloride and Trimethoprim Chitosan/ SBE7-β-CD microspheres. J Drug Deliv Sci Technol 2018;48(September):300–10.

Jing ZW, Jia YY, Wan N, Luo M, Huan ML, Kang T Bin, et al. Design and evaluation of novel pH-sensitive ureido-conjugated chitosan/TPP nanoparticles targeted to Helicobacter pylori. Biomaterials [Internet] 2016;84:276–85. Available from: http://dx.doi.org/10.1016/j.biomaterials.2016.01.045

Manea YK, Khan AMT, Qashqoosh MTA, Wani AA, Shahadat M. Ciprofloxacin- supported chitosan/polyphosphate nanocomposite to bind bovine serum albumin: Its application in drug delivery. J Mol Liq [Internet] 2019;292:111337. Available from: https://doi.org/10.1016/j.molliq.2019.111337

Arif M, Dong QJ, Raja MA, Zeenat S, Chi Z, Liu CG. Development of novel pH- sensitive thiolated chitosan/PMLA nanoparticles for amoxicillin delivery to treat Helicobacter pylori. Mater Sci Eng C 2018;83:17–24.

Abdelkader A, El-Mokhtar MA, Abdelkader O, Hamad MA, Elsabahy M, El-Gazayerly ON. Ultrahigh antibacterial efficacy of meropenem-loaded chitosan nanoparticles in a septic animal model. Carbohydr Polym 2017;174:1041–50.

Aycan D, Alemdar N. Development of pH-responsive chitosan-based hydrogel modified with bone ash for controlled release of amoxicillin. Carbohydr Polym 2018;184:401–7.

Bashir S, Teo YY, Ramesh S, Ramesh K. Synthesis, characterization, properties of N-succinyl chitosan-g-poly (methacrylic acid) hydrogels and in vitro release of theophylline. Polymer (Guildf) 2016;92:36–49.

Angadi SC, Manjeshwar LS, Aminabhavi TM. Novel composite blend microbeads of sodium alginate coated with chitosan for controlled release of amoxicillin. Int J Biol Macromol 2012;51(1-2):45–55.

Bashir S, Teo YY, Ramesh S, Ramesh K, Mushtaq MW. Rheological behavior of biodegradable N-succinyl chitosan-g-poly (acrylic acid) hydrogels and their applications as drug carrier and in vitro theophylline release. Int J Biol Macromol 2018;117:454–66.

Xu S, Zhou Q, Jiang Z, Wang Y, Yang K, Qiu X, et al. The effect of doxycycline- containing chitosan/carboxymethyl chitosan nanoparticles on NLRP3 inflammasome in periodontal disease. Carbohydr Polym 2020;237.

Unagolla JM, Jayasuriya AC. Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. Eur J Pharm Sci 2018;114:199–209.

Blandón LM, Islan GA, Castro GR, Noseda MD, Thomaz-Soccol V, Soccol CR. Kefiran-alginate gel microspheres for oral delivery of ciprofloxacin. Colloids Surfaces B Biointerfaces 2016;145:706–15.

Azevedo MA, Bourbon AI, Vicente AA, Cerqueira MA. Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. Int J Biol Macromol [Internet] 2014;71:141–6. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2014.05.036

Ben Messaoud G, Sánchez-González L, Probst L, Jeandel C, Arab-Tehrany E, Desobry S. Physico-chemical properties of alginate/shellac aqueous-core capsules: Influence of membrane architecture on riboflavin release. Carbohydr Polym [Internet] 2016;144:428–37. Available from: http://dx.doi.org/10.1016/j.carbpol.2016.02.081

Abd El-Ghaffar MA, Hashem MS, El-Awady MK, Rabie AM. PH-sensitive sodium alginate hydrogels for riboflavin controlled release. Carbohydr Polym 2012;89(2):667–75.

Al-Kahtani AA, Sherigara BS. Controlled release of diclofenac sodium through acrylamide grafted hydroxyethyl cellulose and sodium alginate. Carbohydr Polym [Internet] 2014;104(1):151–7. Available from: http://dx.doi.org/10.1016/j.carbpol.2014.01.018

AL-Kahtani AA, Sherigara BS. Semi-interpenetrating network of acrylamide-grafted- sodium alginate microspheres for controlled release of diclofenac sodium, preparation and characterization. Colloids Surfaces B Biointerfaces [Internet] 2014;115:132–8. Available from: http://dx.doi.org/10.1016/j.colsurfb.2013.11.040

Raafat AI, Kamal H, Sharada HM, Abd elhalim SA, Mohamed RD. Radiation development of gastroretentive amoxicillin trihydrate floating-alginate based beads for the treatment of helicobacter pylori. Radiat Phys Chem 2021;179.

Zhu H, Luo W, Ciesielski PN, Fang Z, Zhu JY, Henriksson G, et al. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chem Rev 2016;116(16):9305–74.

Yadollahi M, Gholamali I, Namazi H, Aghazadeh M. Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels. Int J Biol Macromol [Internet] 2015;74:136–41. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2014.11.032

Sood S, Gupta VK, Agarwal S, Dev K, Pathania D. Controlled release of antibiotic amoxicillin drug using carboxymethyl cellulose-cl-poly(lactic acid-co-itaconic acid) hydrogel [Internet]. Elsevier B.V.; 2017. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2017.03.103

Lara-Espinoza C, Carvajal-Millán E, Balandrán-Quintana R, López-Franco Y, Rascón-Chu A. Pectin and pectin-based composite materials: Beyond food texture. Molecules 2018;23(4).

Rebitski EP, Darder M, Carraro R, Ruiz-Hitzky E. Chitosan and pectin core-shell beads encapsulating metformin-clay intercalation compounds for controlled delivery. New J Chem 2020;44(24):10102–10.

Yuliarti O, Hoon ALS, Chong SY. Influence of pH, pectin and Ca concentration on gelation properties of low-methoxyl pectin extracted from Cyclea barbata Miers. Food Struct [Internet] 2017;11:16–23. Available from: http://dx.doi.org/10.1016/j.foostr.2016.10.005

Muthukrishnan S, Murugan I, Selvaraj M. Chitosan nanoparticles loaded with thiamine stimulate growth and enhances protection against wilt disease in Chickpea. Carbohydr Polym 2019;212:169–77.

Chen C, Zhong M, Li G, Yang F, Huang R, Xiao W, et al. Optimization on preparation conditions of calcium-crosslinked modified chitosan as potential matrix material for theophylline sustained-release beads and its evaluation of release kinetics. J Alloys Compd 2016;658:348–55.

Refbacks

  • Saat ini tidak ada refbacks.