Sel Induk Mesenchymal Secretome untuk Gangguan Permukaan Okular

Mia Arifka, Nasrul Wathoni, Gofarana Wilar

Abstrak

Gangguan permukaan okular adalah sekelompok penyakit heterogen yang sangat umum dengan berbagai etiologi dan gejala serta merupakan faktor risiko dengan komplikasi serius pada mata. Obat-obatan saat ini termasuk obat tetes mata yang dijual bebas tidak mengobati gangguan permukaan okular atau telah dikaitkan dengan berbagai efek samping yang mengarah pada pengobatan alternatif menggunakan terapi sel induk. Sel induk mesenchymal (MSC) adalah sel induk multipoten yang berpartisipasi dalam perbaikan jaringan dan memiliki potensi imunomodulator yang cukup besar untuk mengatasi gangguan permukaan okular. MSC mensekresi secretome dengan aktivitas autokrin dan parakrin yang bekerja menghambatan fibrosis dan apoptosis, penekanan sistem kekebalan lokal, peningkatan angiogenesis, dan diferensiasi sel induk dengan melibatkan faktor-faktor terlarut seperti IL-10, TGF-β1, IL-6, TNF-α dan faktor pertumbuhan endotel vaskular (VEGF). Aplikasi MSC-secretome pada kornea tikus setelah cedera secara in vivo diketahui mencegah perkembangan neovaskularisasi kornea. Mekanisme immunomodulasi MSC-secretome dalam memediasi regulasi inflamasi, angiogenesis dan neovaskularisasi pada gangguan permukaan okular dibahas dalam ulasan ini.

Kata Kunci

MSC paracrine signaling; ocular surface disorders; secretome immunomodulatory; secretome mesenchymal stem cells

Teks Lengkap:

PDF

Referensi

Amano S, Yamagami S, Mimura T, Uchida S, Yokoo S. Corneal Stromal and Endothelial Cell Precursors, Cornea. 2006;25:S73–S77. Available from: https://doi.org/10.1097/01.ico.0000247218.10672.7e.

Dartt DA, Willcox MDP. Complexity of the tear film: Importance in homeostasis and dysfunction during disease, Exp. Eye Res. 2013;117:1–3. Available from: https://doi.org/10.1016/j.exer.2013.10.008.

Stern ME, Schaumburg CS, Dana R, Calonge M, Niederkorn JY, Pflugfelder SC. Autoimmunity at the okular surface: Pathogenesis and regulation, Mucosal Immunololgy. 2010;3:425–442. Available from: https://doi.org/10.1038/mi.2010.26.

Surgery M, Hospital S, Surgery M, Key S, Processing F, Park G-Y, et al. Tissue Engineering and Regenerative Medicine. Concise Review : Cell-Based Strategies in Bone Tissue Engineering and Regenerative Medicine, Stem Cells Transl. Med. 2014;4:1–10.

Li F. Mesenchymal stem cells: Potential role in corneal wound repair and transplantation, World J. Stem Cells. 2014;6:296. Available from: https://doi.org/10.4252/wjsc.v6.i3.296.

Reinshagen H, Auw-Haedrich C, Sorg RV, Boehringer D, Eberwein P, Schwartzkopff J, et al. Corneal surface reconstruction using adult mesenchymal stem cells in experimental limbal stem cell deficiency in rabbits, Acta Ophthalmol. 2011;89:741–748. Available from: https://doi.org/10.1111/j.1755- 3768.2009.01812.x.

Cejkova J, Trosan P, Cejka C, Lencova A, Zajicova A, Javorkova E, et al. Suppression of alkali-induced oxidative injury in the cornea by mesenchymal stem cells growing on nanofiber scaffolds and transferred onto the damaged corneal surface, Exp. Eye Res. 2013;116:312–323. Available from: https://doi.org/10.1016/j.exer.2013.10.002.

Holan V, Javorkova E. Mesenchymal Stem Cells, Nanofiber Scaffolds and Okular Surface Reconstruction, Stem Cell Rev. Reports. 2013;9:609–619. Available from: https://doi.org/10.1007/s12015-013-9449-0.

Jiang TS, Cai L, Ji WY, Hui YN, Wang YS, Hu D, et al. Reconstruction of the corneal epithelium with induced marrow mesenchymal stem cells in rats, Mol. Vis. 2010;16:1304–1316.

Eslani M, Putra I, Shen X, Hamouie J, Tadepalli A, Anwar KN, et al. Cornea- Derived Mesenchymal Stromal Cells Therapeutically Modulate Macrophage Immunophenotype and Angiogenic Function, Stem Cells. 2018;36:775–784. Available from: https://doi.org/10.1002/stem.2781.

Madrigal M, Rao KS, Riordan NH. A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods 2014:1–14.

Eslani M, Putra I, Shen X, Hamouie J, Afsharkhamseh N, Besharat S, et al. Corneal mesenchymal stromal cells are directly antiangiogenic via PEDF and sFLT-1, Investig. Ophthalmol. Vis. Sci. 2017;58:5507–5517. Available from: https://doi.org/10.1167/iovs.17-22680.

Yazdanpanah G, Haq Z, Kang K, Jabbehdari S, Rosenblatt Ml, Djalilian AR. Strategies for reconstructing the limbal stem cell niche, Ocul. Surf. 2019;17:230– 240. Available from: https://doi.org/10.1016/j.jtos.2019.01.002.

Yao L, rong-Li Z, ru Su W, ping Li Y, li Lin M, xin Zhang W, et al. Role of mesenchymal stem cells on cornea wound healing induced by acute alkali burn, PLoS One. 2012;7. Available from: https://doi.org/10.1371/journal.pone.0030842.

Oh JY, Kim MK, Shin MS, Lee HJ, Ko JH, Wee WR, et al. The Anti-Inflammatory and Anti-Angiogenic Role of Mesenchymal Stem Cells in Corneal Wound Healing Following Chemical Injury, Stem Cells. 2008;26:1047–1055. Available from: https://doi.org/10.1634/stemcells.2007-0737.

Oh JY, Roddy GW, Choi H, Lee RH, Ylöstalo JH, Rosa RH, et al. Anti- inflammatory protein TSG-6 reduces inflammatory damage to the cornea following chemical and mechanical injury, Proc. Natl. Acad. Sci. U. S. A. 2010;107:16875–16880. Available from: https://doi.org/10.1073/pnas.1012451107.

Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine, Int. J. Mol. Sci. 2017;18. Available from: https://doi.org/10.3390/ijms18091852.

Gayton JL. Etiology, prevalence, and treatment of dry eye disease, Clin. Ophthalmol. 2009;3:405–412. Available from: https://doi.org/10.2147/opth.s5555.

Tan G, Li J, Song Y, Yu Y, Liu D, Pan W. Phenylboronic acid-tethered chondroitin sulfate-based mucoadhesive nanostructured lipid carriers for the treatment of dry eye syndrome, Acta Biomater. 20199;9:350–362. Available from: https://doi.org/10.1016/j.actbio.2019.08.035.

Schaumberg DA, Sullivan DA, Dana MR. Epidemiology of dry eye syndrome,

Adv. Exp. Med. Biol. 2002;506 B:989–998. Available from:

https://doi.org/10.1007/978-1-4615-0717-8_140.

Pisella PJ, Brignole F, Debbasch C, Lozato PA, Creuzot-Garcher C, Bara J, et al.

Flow cytometric analysis of conjunctival epithelium in okular rosacea and

keratoconjunctivitis sicca, Ophthalmology. 2000;107:1841–1849. Available from:

https://doi.org/10.1016/S0161-6420(00)00347-X.

Miyazaki D, Fukagawa K, Okamoto S, Fukushima A, Uchio E, Ebihara N, et al.

Epidemiological aspects of allergic conjunctivitis, Allergol. Int. 2020;69:487–495.

Available from: https://doi.org/10.1016/j.alit.2020.06.004.

Liu L, Wu J, Geng J, Yuan Z, Huang D. Geographical prevalence and risk factors

for pterygium: A systematic review and meta-analysis, BMJ Open. 2013;3.

Available from: https://doi.org/10.1136/bmjopen-2013-003787.

Ma Y, Xu Y, Xiao Z, Yang W, Zhang C, Song E, et al. Reconstruction of

Chemically Burned Rat Corneal Surface by Bone Marrow-Derived Human

Mesenchymal Stem Cells, Stem Cells. 2006; 24:315–321. Available from:

https://doi.org/10.1634/stemcells.2005-0046.

He H, Yiu SC. Stem cell-based therapy for treating limbal stem cells deficiency: A

review of different strategies, Saudi J. Ophthalmol. 2014;28:188–194. Available

from: https://doi.org/10.1016/j.sjopt.2014.06.003.

Haagdorens M, Van Acker SI, Van Gerwen V, Ní Dhubhghaill S, Koppen C,

Tassignon MJ, et al. Limbal stem cell deficiency: Current treatment options and

emerging therapies, Stem Cells Int. 2016;2016. Available from:

https://doi.org/10.1155/2016/9798374.

Eaves CJ. Hematopoietic stem cells: Concepts, definitions, and the new reality,

Blood. 2015; 125:2605–2613. Available from: https://doi.org/10.1182/blood-2014-

-570200.

Le T, Chong J. Cardiac progenitor cells for heart repair, Cell Death Discov.

;21–4. Available from: https://doi.org/10.1038/cddiscovery.2016.52.

Klimczak A, Kozlowska U. Mesenchymal stromal cells and tissue-specific

progenitor cells: Their role in tissue homeostasis, Stem Cells Int. 2016;2016.

Available from: https://doi.org/10.1155/2016/4285215.

Beyazyildiz E, Pinarli FA, Beyazyildiz Ö, Hekimoʇlu ER, Acar U, Demir M, et al.

Efficacy of topical mesenchymal stem cell therapy in the treatment of

experimental dry eye syndrome model, Stem Cells Int. 2014; 2014. Available

from: https://doi.org/10.1155/2014/250230.

Phinney DG, Prockop D., Concise Review: Mesenchymal Stem/Multipotent Stromal Cells: The State of Transdifferentiation and Modes of Tissue Repair-Current Views, Stem Cells. 2007;25:2896–2902. Available from:https://doi.org/10.1634/stemcells.2007-0637.

Sun J, Liu WH, Deng FM, Luo YH, Wen K, Zhang H, et al. Differentiation of rat

adipose-derived mesenchymal stem cells into corneal-like epithelial cells driven

by PAX6, Exp. Ther. Med. 2018;15:1424–1432. Available from: https://doi.org/10.3892/etm.2017.5576.

Zhang L, Coulson-Thomas VJ, Ferreira TG, Kao WWY. Mesenchymal stem cells

for treating okular surface diseases, BMC Ophthalmol. 2015;15. Available from:

https://doi.org/10.1186/s12886-015-0138-4.

Lin N, Hu K, Chen S, Xie S, Tang Z, Lin J, et al. Nerve growth factor-mediated

paracrine regulation of hepatic stellate cells by multipotent mesenchymal stromal

cells, Life Sci. 2009;85:291–295. Available from:

https://doi.org/10.1016/j.lfs.2009.06.007.

Joe AW, Gregory-Evans K. Mesenchymal stem cells and potential applications in

treating okular disease, Curr. Eye Res. 2010;35:941–952. Available from:

https://doi.org/10.3109/02713683.2010.516466.

Polisetty N, Fatima A, Madhira SL, Sangwan VS, Vemuganti GK. Mesenchymal

cells from limbal stroma of human eye, Mol. Vis. 2008;14:431–442.

Gan L, Liu Y, Cui D, Pan Y, Zheng L, Wan M. Dental Tissue-Derived Human

Mesenchymal Stem Cells and Their Potential in Therapeutic Application, Stem

Cells Int. 2020;2020. Available from: https://doi.org/10.1155/2020/8864572.

Muhammad SA, Abbas AY, Saidu Y, Fakurazi S, Bilbis LS. Therapeutic efficacy of

mesenchymal stromal cells and secretome in pulmonary arterial hypertension: a

systematic review and meta-analysis, Biochimie. 2019. Available from:

https://doi.org/10.1016/j.biochi.2019.10.016.

Miao Z, Jin J, Chen L, Zhu J, Huang W, Zhao J, et al. Isolation of mesenchymal

stem cells from human placenta: Comparison with human bone marrow

mesenchymal stem cells, Cell Biol. Int. 2006;30:681–687. Available from:

https://doi.org/10.1016/j.cellbi.2006.03.009.

Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al. A Perivascular

Origin for Mesenchymal Stem Cells in Multiple Human Organs, Cell Stem Cell.

;3:301–313. Available from: https://doi.org/10.1016/j.stem.2008.07.003.

Sabapathy V, Kumar S. hiPSC-derived iMSCs: NextGen MSCs as an advanced

therapeutically active cell resource for regenerative medicine, J. Cell. Mol. Med.

;20:1571–1588. Available from: https://doi.org/10.1111/jcmm.12839.

Cejka C, Holan V, Trosan P, Zajicova A, Javorkova E, Cejkova J. The Favorable

Effect of Mesenchymal Stem Cell Treatment on the Antioxidant Protective

Mechanism in the Corneal Epithelium and Renewal of Corneal Optical Properties

Changed after Alkali Burns, Oxid. Med. Cell. Longev. 2016;2016. Available from:

https://doi.org/10.1155/2016/5843809.

Lee MJ, Ko AY, Ko JH, Lee HJ, Kim MK, Wee WR, et al. Accepted manuscript

Available from: https://doi.org/10.1038/mt.2014.159.

Jin HJ, Bae YK, Kim M, Kwon SJ, Jeon HB, Choi SJ, et al. Comparative analysis

of human mesenchymal stem cells from bone marrow, adipose tissue, and

umbilical cord blood as sources of cell therapy, Int. J. Mol. Sci. 2013;14:17986–

Available from: https://doi.org/10.3390/ijms140917986.

Fuentes-Julián S, Arnalich-Montiel F, Jaumandreu L, Leal M, Casado A, García-

Tuñon I, et al. Adipose-derived mesenchymal stem cell administration does not

improve corneal graft survival outcome, PLoS One. 2015;10:1–25. Available

from: https://doi.org/10.1371/journal.pone.0117945.

Nieto-Nicolau N, Martín-Antonio B, Müller-Sánchez C, Casaroli-Marano RP. In

vitro potential of human mesenchymal stem cells for corneal epithelial

regeneration, Regen. Med. 2020;15:1409–1426. Available from:

https://doi.org/10.2217/rme-2019-0067.

Sidney LE, Hopkinson A. Corneal keratocyte transition to mesenchymal stem cell

phenotype and reversal using serum-free medium supplemented with fibroblast

growth factor-2, transforming growth factor-β3 and retinoic acid, J. Tissue Eng.

Regen. Med. 2018;12:e203–e215. Available from:

https://doi.org/10.1002/term.2316.

Branch MJ, Hashmani K, Dhillon P, Jones DRE, Dua HS, Hopkinson A.

Mesenchymal stem cells in the human corneal limbal stroma, Investig.

Ophthalmol. Vis. Sci. 2012;53:5109–5116. Available from:

https://doi.org/10.1167/iovs.11-8673.

Orozco Morales ML, Marsit NM, McIntosh OD, Hopkinson A, Sidney LE. Anti-

inflammatory potential of human corneal stroma-derived stem cells determined by a novel in vitro corneal epithelial injury model, World J. Stem Cells.

;11:84–99. Available from: https://doi.org/10.4252/wjsc.v11.i2.84.

Hertsenberg AJ, Shojaati G, Funderburgh ML, Mann MM, Du Y, Funderburgh JL.

Corneal stromal stem cells reduce corneal scarring by mediating neutrophil

infiltration after wounding, PLoS One. 2017;12:1–16. Available from:

https://doi.org/10.1371/journal.pone.0171712.

Samaeekia R, Rabiee B, Putra I, Shen X, Park YJ, Hematti P, et al. Effect of

human corneal mesenchymal stromal cell-derived exosomes on corneal

epithelial wound healing, Investig. Ophthalmol. Vis. Sci. 2018;59:5194–5200.

Available from: https://doi.org/10.1167/iovs.18-24803.

Hashmani K, Branch MJ, Sidney LE, Dhillon PS, Verma M, McIntosh OD, et al.

Characterization of corneal stromal stem cells with the potential for epithelial

transdifferentiation, Stem Cell Res. Ther. 2013;4. Available from:

https://doi.org/10.1186/scrt226.

Gomes JÁP, Monteiro BG, Melo GB, Smith RL, da Silva MCP, Lizier NF, et al.

Corneal reconstruction with tissue-engineered cell sheets composed of human

immature dental pulp stem cells, Investig. Ophthalmol. Vis. Sci. 2010;51:1408–

Available from: https://doi.org/10.1167/iovs.09-4029.

Joyce NC, Harris DL, Markov V, Zhang Z, Saitta B. Potential of human umbilical

cord blood mesenchymal stem cells to heal damaged corneal endothelium, Mol.

Vis. 2012;18:547–564.

Azmi SM, Salih M, Abdelrazeg S, Roslan FF, Mohamed R, Jie TJ, et al. Human

umbilical cord-mesenchymal stem cells: A promising strategy for corneal

epithelial regeneration, Regen. Med. 2020;15:1381–1397. Available from:

https://doi.org/10.2217/rme-2019-0103.

Ambrose W, Schein O, Elisseeff J. A Tale of Two Tissues: Stem Cells in Cartilage

and Corneal Tissue Engineering, Curr. Stem Cell Res. Ther. 2010;5:37–48.

Available from: https://doi.org/10.2174/157488810790442804.

Robertson DM, Alexander LJ, Bonanno JA, Fleiszig SMJ, McNamara N. Cornea

and Okular Surface Disease, Optom. Vis. Sci. 2014;91:S3–S16. Available from:

https://doi.org/10.1097/opx.0000000000000226.

Oh JY, Kim MK, Shin MS, Wee WR, Lee JH. Cytokine secretion by human

mesenchymal stem cells cocultured with damaged corneal epithelial cells,

Cytokine. 2009;46:100–103. Available from:

https://doi.org/10.1016/j.cyto.2008.12.011.

Oh JY, Kim MK, Ko JH, Lee HJ, Lee JH, Wee WR. Rat allogeneic mesenchymal

stem cells did not prolong the survival of corneal xenograft in a pig-to-rat model,

Vet. Ophthalmol. 2009;12:35–40. Available from: https://doi.org/10.1111/j.1463-

2009.00724.x.

Zoukhri D. Mechanisms involved in injury and repair of the murine lacrimal gland:

Role of programmed cell death and mesenchymal stem cells, Ocul. Surf.

;8:60–69. Available from: https://doi.org/10.1016/S1542-0124(12)70070-8.

Zoukhri D, Fix A, Alroy J, Kublin CL. Mechanisms of murine lacrimal gland repair

after experimentally induced inflammation, Investig. Ophthalmol. Vis. Sci.

;49:4399–4406. Available from: https://doi.org/10.1167/iovs.08-1730.

Lötvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, et al. Minimal

experimental requirements for definition of extracellular vesicles and their

functions: A position statement from the International Society for Extracellular

Vesicles, J. Extracell. Vesicles. 2014;3. Available from:

https://doi.org/10.3402/jev.v3.26913.

Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and

friends, J. Cell Biol. 2013;200:373–383. Available from:

https://doi.org/10.1083/jcb.201211138.

Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, et al.

Microenvironmental pH is a key factor for exosome traffic in tumor cells, J. Biol.

Chem. 2009;284:34211–34222. Available from:

https://doi.org/10.1074/jbc.M109.041152.

Turturici G, Tinnirello R, Sconzo G, Geraci F. Extracellular membrane vesicles as

a mechanism of cell-to-cell communication: Advantages and disadvantages, Am.

J. Physiol. - Cell Physiol. 2014;306. Available from:

https://doi.org/10.1152/ajpcell.00228.2013.

Marote A, Teixeira FG, Mendes-Pinheiro B, Salgado AJ. MSCs-derived

exosomes: Cell-secreted nanovesicles with regenerative potential, Front.

Pharmacol. 2016;7:1–8. Available from:

https://doi.org/10.3389/fphar.2016.00231.

Schaffer. Engineering microenvironments to control stem cell fate and function,

StemBook. 2008:1–12. Available from: https://doi.org/10.3824/stembook.1.5.1.

Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell

signaling and therapy, Circ. Res. 2008;103:1204–1219. Available from:

https://doi.org/10.1161/CIRCRESAHA.108.176826.

Fernandes-Cunha GM, Na KS, Putra I, Lee HJ, Hull S, Cheng YC, et al. Corneal

Wound Healing Effects of Mesenchymal Stem Cell Secretome Delivered Within a

Viscoelastic Gel Carrier, Stem Cells Transl. Med. 2019;8:478–489. Available

from: https://doi.org/10.1002/sctm.18-0178.

Rostami Z, Khorashadizadeh M, Naseri M. Immunoregulatory properties of

mesenchymal stem cells: Micro-RNAs, Immunol. Lett. 2020;219:34–45. Available

from: https://doi.org/10.1016/j.imlet.2019.12.011.

Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, et

al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: The

pulmonary first-pass effect, Stem Cells Dev. 2009;18:683–691. Available from:

https://doi.org/10.1089/scd.2008.0253.

Kim DS, Jang IK, Lee MW, Ko YJ, Lee DH, Lee JW, et al. Enhanced

Immunosuppressive Properties of Human Mesenchymal Stem Cells Primed by

Interferon-γ, EBioMedicine. 2018;28:261–273. Available from:

https://doi.org/10.1016/j.ebiom.2018.01.002.

Krampera M, Galipeau J, Shi Y, Tarte K, Sensebe L. Immunological

characterization of multipotent mesenchymal stromal cells-The international

society for cellular therapy (ISCT) working proposal, Cytotherapy. 2013;15:1054–

Available from: https://doi.org/10.1016/j.jcyt.2013.02.010.

Kean TJ, Lin P, Caplan AI, Dennis JE. MSCs: Delivery routes and engraftment,

cell-targeting strategies, and immune modulation, Stem Cells Int. 2013;2013.

Available from: https://doi.org/10.1155/2013/732742.

Almaliotis D, Koliakos G, Papakonstantinou E, Komnenou A, Thomas A, Petrakis

S, et al. Mesenchymal stem cells improve healing of the cornea after alkali injury,

Graefe’s Arch. Clin. Exp. Ophthalmol. 2015;253:1121–1135. Available from:

https://doi.org/10.1007/s00417-015-3042-y.

Di G, Du X, Qi X, Zhao X, Duan H, Li S, et al. Mesenchymal stem cells promote

diabetic corneal epithelial wound healing through TSG-6-dependent stem cell

activation and macrophage switch, Investig. Ophthalmol. Vis. Sci. 2017;58:4064–

Available from: https://doi.org/10.1167/iovs.17-21506.

Espandar L, Caldwell D, Watson R, Blanco-Mezquita T, Zhang S, Bunnell B.

Application of adipose-derived stem cells on scleral contact lens carrier in an

animal model of severe acute alkaline burn, Eye Contact Lens. 2014;40:243–

Available from: https://doi.org/10.1097/ICL.0000000000000045.

Galindo S, Herreras JM, López-Paniagua M, Rey E, de la Mata A, Plata-Cordero

M, et al. Therapeutic Effect of Human Adipose Tissue-Derived Mesenchymal

Stem Cells in Experimental Corneal Failure Due to Limbal Stem Cell Niche

Damage, Stem Cells. 2017;35:2160–2174. Available from:

https://doi.org/10.1002/stem.2672.

Petrenko Y, Vackova I, Kekulova K, Chudickova M, Koci Z, Turnovcova K, et al. A

Comparative Analysis of Multipotent Mesenchymal Stromal Cells derived from

Different Sources, with a Focus on Neuroregenerative Potential, Sci. Rep.

;10:1–15. Available from: https://doi.org/10.1038/s41598-020-61167-z.

Ke Y, Wu Y, Cui X, Liu X, Yu M, Yang C, et al. Polysaccharide hydrogel combined

with mesenchymal stem cells promotes the healing of corneal alkali burn in rats,

PLoS One. 2015;10:1–18. Available from:

https://doi.org/10.1371/journal.pone.0119725.

Martínez-Carrasco R, Sánchez-Abarca LI, Nieto-Gómez C, Martín García E,

Sánchez-Guijo F, Argüeso P, et al. Subconjunctival injection of mesenchymal

stromal cells protects the cornea in an experimental model of GVHD, Ocul. Surf.

;17:285–294. Available from: https://doi.org/10.1016/j.jtos.2019.01.001.

Mittal SK, Omoto M, Amouzegar A, Sahu A, Rezazadeh A, Katikireddy KR, et al.

Restoration of Corneal Transparency by Mesenchymal Stem Cells, Stem Cell

Reports. 2016;7:583–590. Available from:

https://doi.org/10.1016/j.stemcr.2016.09.001.

Mittal SK, Foulsham W, Shukla S, Elbasiony E, Omoto M, Chauhan SK.

Mesenchymal Stromal Cells Modulate Corneal Alloimmunity via Secretion of

Hepatocyte Growth Factor, Stem Cells Transl. Med. 2019;8:1030–1040.

Available from: https://doi.org/10.1002/sctm.19-0004.

Lohan P, Murphy N, Treacy O, Lynch K, Morcos M, Chen B, et al. Third-party allogeneic mesenchymal stromal cells prevent rejection in a pre-sensitized high-

risk model of corneal transplantation, Front. Immunol. 2018;9:1–14. Available from: https://doi.org/10.3389/fimmu.2018.02666.

Dicicco RM, Bell BA, Kaul C, Hollyfield JG, Anand-apte B, Perkins BD, et al. C.C.

Foundation, IOVS Papers in Press. Published on September 9, 2014 as

Manuscript iovs.14-14724,2014;01:1–41.

Shukla S, Mittal SK, Foulsham W, Elbasiony E, Singhania D, Sahu SK, et al.

Therapeutic efficacy of different routes of mesenchymal stem cell administration

in corneal injury, Ocul. Surf. 2019;17:729–736. Available from:

https://doi.org/10.1016/j.jtos.2019.07.005.

Song HB, Park SY, Ko JH, Park JW, Yoon CH, Kim DH, et al. Mesenchymal

Stromal Cells Inhibit Inflammatory Lymphangiogenesis in the Cornea by

Suppressing Macrophage in a TSG-6-Dependent Manner, Mol. Ther.

;26:162–172. Available from: https://doi.org/10.1016/j.ymthe.2017.09.026.

Zajicova A, Pokorna K, Lencova A, Krulova M, Svobodova E, Kubinova S, et al.

Treatment of okular surface injuries by limbal and mesenchymal stem cells

growing on nanofiber scaffolds, Cell Transplant. 2010;19:1281–1290. Available

from: https://doi.org/10.3727/096368910X509040.

Su W, Wan Q, Huang J, Han L, Chen X, Chen G, et al. Culture medium from

TNF-α-stimulated mesenchymal stem cells attenuates allergic conjunctivitis

through multiple antiallergic mechanisms, J. Allergy Clin. Immunol.

;136:423-432.e8. Available from: https://doi.org/10.1016/j.jaci.2014.12.1926.

Lee EY, Xia Y, Kim WS, Kim MH, Kim TH, Kim KJ, et al. Hypoxia-enhanced

wound-healing function of adipose-derived stem cells: Increase in stem cell

proliferation and up-regulation of VEGF and bFGF, Wound Repair Regen.

;17:540–547. Available from: https://doi.org/10.1111/j.1524-

X.2009.00499.x.

Sulaiman RS, Basavarajappa HD, Corson TW. Natural product inhibitors of

okular angiogenesis, Exp. Eye Res. 2014;129:161–171. Available from:

https://doi.org/10.1016/j.exer.2014.10.002.

Gomzikova MO, James V, Rizvanov AA. Therapeutic Application of

Mesenchymal Stem Cells Derived Extracellular Vesicles for Immunomodulation,

Front. Immunol. 2019;10:1–9. Available from:

https://doi.org/10.3389/fimmu.2019.02663.

Refbacks

  • Saat ini tidak ada refbacks.