Potensi Rumput Laut Guso (Eucheuma spinosum) Hasil Budidaya Lokal Sebagai Bahan Kosmetik: Sebuah Studi Literatur

Ramadhania Ariza Putri, Santi Rukminita Anggraeni, Soraya Ratnawulan Mita

Abstrak

Produk kosmetik yang mengandung bahan alami memberi lebih banyak khasiat, sehingga membuat konsumen lebih memilih produk dengan kandungan bahan alami. Industri kecantikan akan menjadi salah satu penggerak ekonomi paling utama karena Indonesia merupakan negara dengan populasi terbanyak ke-4 di dunia. Selain itu, potensi dan kekayaan alam di Indonesia juga mendukung perusahaan kosmetik luar dan dalam negeri untuk mengembangkan produk kosmetik dan skin care yang natural yang berkualitas. Senyawa alami digunakan sebagai bahan kosmetik memiliki keuntungan yang lebih banyak dibanding komposisi yang ada pada produk kosmetik pada umumnya, karena biasanya lebih ramah lingkungan, tidak beracun, tidak bersifat karsinogenik, lebih mudah didapatkan, dan lebih menguntungkan perekonomian Salah satu spesies alga merah (Rhodophyta) yang banyak dibudidayakan di Indonesia adalah Eucheuma spinosum. Spesies ini dapat dibudidayakan di banyak daerah perairan Indonesia, seperti Nusa Tenggara Barat, Jawa Timur, Kalimantan Barat, hingga Riau. Contoh senyawa yang dapat dihasilkan E. spinosum adalah iota carrageenan, pigmen alga (karotenoid), flavonoid, senyawa fenolik, alkaloid, triterpenoid, steroid, tanin, dan saponin. Senyawa tersebut memiliki berbagai potensi di bidang kosmetik, misalnya sebagai senyawa antioksidan, antibakteri, senyawa fotoprotektif, bahan pelembab kulit, senyawa anti-tyrosinase, anti-aging dan agen pembentuk gel atau stabilisator pada produk kosmetik.

Kata Kunci

Kosmetik, Alga merah, Eucheuma spinosum, Skin care

Teks Lengkap:

PDF

Referensi

Lixandru MG. Advertising for natural beauty products: The shift in cosmetic industry. Eur Sci J. 2017;7881:6–13.

Matea Matic, Barbara Puh. Consumers’ Purchase Intentions Towards Natural Cosmetics. Ekon Vjesn - Rev Contemp Business, Entrep Econ Issues [Internet]. 2016;29(1):53–64. Available from: https://hrcak.srce.hr/ojs/index.php/ekonomski-vjesnik/article/view/3689

Ahmad SNB, Omar AB, Rose R Bin. Influence of Personal Values on Generation Z’s Purchase Intention for Natural Beauty Products. Adv Glob Bus Res. 2015;12(1):436–45.

Draelos ZD. Evidence-Based Procedural Dermatology. Evidence-Based Proced Dermatology. 2019;

Wang HMD, Chen CC, Huynh P, Chang JS. Exploring the potential of using algae in cosmetics. Bioresour Technol. 2015 May 1;184:355–62.

Bouanati T, Colson E, Moins S, Cabrera JC, Eeckhaut I, Raquez JM, et al. Microwave-assisted depolymerization of carrageenans from Kappaphycus alvarezii and Eucheuma spinosum: Controlled and green production of oligosaccharides from the algae biomass. Algal Res. 2020;51(August).

Diharmi A, Fardiaz D, Andarwulan N. Chemical and Minerals Composition of Dried Seaweed Eucheuma spinosum Collected from Indonesia Coastal Sea Regions. Int J Ocean Oceanogr. 2019;13(1):65–71.

Sofiana MSJ, Aritonang AB, Safitri I, Helena S, Nurdiansyah SI, Risko, et al. Proximate, Phytochemicals, Total phenolic content and antioxidant activity of ethanolic extract of Eucheuma spinosum seaweed. Syst Rev Pharm. 2020;11(8):228–32.

Lumbessy SY, Setyowati DNA, Mukhlis A, Lestari DP, Azhar F. Komposisi nutrisi dan kandungan pigmen fotosintesis tiga spesies alga merah (Rhodophyta sp.) hasil budidaya. J Mar Res. 2020;9(4):431–8.

Ridwan M, Tantu G, Zainuddin H. Analisis Kualitas Keragenan Rumput Laut Jenis Eucheuma Spinosum Pada Ekosistem Yang Berbeda Di Perairan Tomia, Kabupaten Wakatobi, Provinsi Sulawesi Tenggara. J Aquac Environ. 2019;1(2):39–45.

Arisandi A, Farid A, Wulandari RA, Muktisari RD. Uji Efektifitas Iodium yang Berasal dari Rumput Laut (Eucheuma spinosum) Terhadap Bakteri Escherichia coli. Juv Ilm Kelaut dan Perikan. 2023;4(4):351–8.

Wahid AR, Ittiqo DH, Hati MP, Safwan S, Nopianti MS, Karim SW. Physical Stability of Gel of Read Algae (Eucheuma spinosum) Extract and Evaluation of its Antioxidant effect. Res J Pharm Technol [Internet]. 2023;16(10):4729–36. Available from: http://dx.doi.org/10.52711/0974-360X.2023.00768

Effendi I, Prayogi MR, Mulyadi A. Antibacterial activity of Eucheuma spinosum extract against Vibrio alginolyticus and Aeromonas hydrophila. AACL Bioflux. 2023;16(2):1105–13.

Cut Bidara Panita Umar, Anatje J Pattipeilohy, Wa Yatmi Wali. Uji Aktivitas Antibakteri Ekstrak Etanol Rumput Laut Merah (Eucheuma Spinosum) Terhadap Pertumbuhan Bakteri Escherichia Coli Dengan Menggunakan Metode Difusi Sumuran. J Ris Rumpun Ilmu Kedokt. 2023;1(1):46–51.

Pakki E, Murdifin M, Wijoyo N, Sumarheni S. Study of sunscreen and antioxidant activity of combination extracts from the red algae Eucheuma cottonii and Eucheuma spinosum. Drug Invent Today. 2018;10(9):1827–30.

Rismayanti NLPM, Husni A. Antioxidant activity of methanolic extract of Eucheuma spinosum extracted using a microwave. IOP Conf Ser Earth Environ Sci. 2021;763(1).

Muawanah, Ahmad A, Natsir H. Antioxidant activity and toxicity polysaccharide extract from red algae Eucheuma spinosum and Eucheuma cottonii. Mar Chim Acta. 2016;17(2):15–23.

Khatulistiani TS, Noviendri D, Munifah I, Melanie S. Bioactivities of red seaweed extracts from Banten, Indonesia. IOP Conf Ser Earth Environ Sci. 2019;404(1).

Podungge A, Damongilala LJ, Mewengkang HW. Kandungan Antioksidan Pada Rumput Laut Eucheuma Spinosum Yang Diekstrak Dengan Metanol Dan Etanol. Media Teknol Has Perikan. 2018;6(1):1.

Inayah N, Masruri M. Free-Radical Scavenging Activity (FRSA) of Secondary Metabolite Extracted from Indonesian Eucheuma spinosum. Alchemy. 2021;9(1):1–6.

Safitri A, Srihardyastutie A, Roosdiana A, Sutrisno S. Antibacterial Activity and Phytochemical Analysis of Edible Seaweed Eucheuma spinosum Against Staphyloccocus aureus. J Pure Appl Chem Res. 2018;7(3):308–15.

Matanjun P, Mohamed S, Mustapha NM, Muhammad K, Ming CH. Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo. J Appl Phycol [Internet]. 2008;20(4):367–73. Available from: https://doi.org/10.1007/s10811-007-9264-6

Balasubramaniam V, Lee JC, Noh MFM, Ahmad S, Brownlee IA, Ismail A. Alpha-amylase, antioxidant, and anti-inflammatory activities of Eucheuma denticulatum (N.L. Burman) F.S. Collins and Hervey. J Appl Phycol [Internet]. 2016;28(3):1965–74. Available from: https://doi.org/10.1007/s10811-015-0690-6

Sari NI, Diharmi A, Sidauruk SW, Sinurat FM. Identifikasi Komponen Bioaktif dan Aktivitas Ekstrak Rumput Laut Merah (Eucheuma spinosum). J Teknol dan Ind Pertan Indones. 2022;14(1):9–15.

Akib NI, Triwatami M, Putri AEP. Aktivitas Antibakteri Sabun Cuci Tangan yang Mengandung Ekstrak Metanol Rumput Laut Eucheuma spinosum. Medula. 2019;7(1):50–61.

Damongilala LJ, Dotulong V, Apriyanti E, Kurnia D. Antioxidant and Antibacterial Activities of the Tropical Red Alga Eucheuma spinosum: In Silico Study. Nat Prod Commun [Internet]. 2023 Jul 1;18(7):1934578X231187467. Available from: https://doi.org/10.1177/1934578X231187467

Putri T, Arsianti A, Subroto PAM, Lesmana E. Phytochemical analysis and antioxidant activity of marine algae Eucheuma Sp. AIP Conf Proc [Internet]. 2019 Apr 9;2092(1):30016. Available from: https://doi.org/10.1063/1.5096720

Zainuddin EN. Antibacterial Potential of Marine AlgaeCollected From South Sulawesi Coast AgainstHuman Pathogens. 2010;(October):115–27.

Maulana IT, Safira R, Aprianti I, Syafnir L, Kodir RA. Antibacterial compound from Euchema spinosum originated from Tasikmalaya West Java against pathogen bacteria with TLC-bioautography Antibacterial compound from Euchema spinosum originated from Tasikmalaya West Java against pathogen bacteria with TLC-bioau. 2022;(October 2021).

Abdillah AA, Alamsjah MA, Sugijanto NEN. Antioxidant properties from seaweeds Kappaphycus alvarezii, Euchema spinosum and Sargasum sp. using different solvent. IOP Conf Ser Earth Environ Sci [Internet]. 2021;679(1):12034. Available from: https://dx.doi.org/10.1088/1755-1315/679/1/012034

Damongilala LJ, Widjanarko SB, Zubaidah E, Runtuwene MRJ. Antioxidant Activity Against Methanol Extraction of Eucheuma cotonii and E . spinosum Collected From North Sulawesi Waters , Indonesia. 2013;17:7–14.

Jeane Damongilala L, Wewengkang DS, Losung F, Ekawati Tallei T. Phytochemical and Antioxidant Activities of <i>Eucheuma spinosum </i>as Natural Functional Food from North Sulawesi Waters, Indonesia. Pakistan J Biol Sci PJBS [Internet]. 2021;24(1):132–8. Available from: http://europepmc.org/abstract/MED/33683039

Farah Nurshahida MS, Nazikussabah Z, Subramaniam S, Wan Faizal WI, Nurul Aini MA. Physicochemical, Physical Characteristics and Antioxidant Activities of Three Edible Red Seaweeds (Kappaphycus alvarezii, Eucheuma spinosum and Eucheuma striatum) from Sabah, Malaysia. IOP Conf Ser Mater Sci Eng [Internet]. 2020;991(1):12048. Available from: https://dx.doi.org/10.1088/1757-899X/991/1/012048

Subroto PAM, Arsianti A, Putri T, Lesmana E. Phytochemical analysis and anticancer activity of seaweed Eucheuma Sp. against colon HCT-116 cells. AIP Conf Proc [Internet]. 2019 Apr 9;2092(1):30015. Available from: https://doi.org/10.1063/1.5096719

Arsianti A. Phytochemical Constituent and Antioxidant Activity Evaluation of Red Seaweed Eucheuma sp . Phytochemical Constituent and Antioxidant Activity Evaluation of Red Seaweed. 2023;2(1).

Sari BL, Susanti N, Sutanto S. Skrining Fitokimia dan Aktivitas Antioksidan Fraksi Etanol Alga Merah Eucheuma spinosum. Pharm Sci Res. 2015;2(2):59–68.

Purnamasari LS, Sutanto AH, Angelita K, Made N, Setyarini A. Relasi Konsumen dengan Produk Kecantikan serta Pengaruhnya terhadap Purchase Intention. 2022;6(4):2874–81.

Agustini MP, Komariah K, Mulia Z F. Analisis Interaksi Sosial Konten Marketing Dan Influencer Marketing Terhadap Minat Beli Produk Kosmetik (Survey Pada Konsumen Produk Dear Me Beauty Di Kota Sukabumi). Manag Stud Entrep J [Internet]. 2022 Jul 24;3(3 SE-Articles):1601–10. Available from: https://yrpipku.com/journal/index.php/msej/article/view/647

Ferdinand M, Ciptono WS. Indonesia’s Cosmetics Industry Attractiveness, Competitiveness and Critical Success Factor Analysis. J Manaj Teor dan Terap | J Theory Appl Manag. 2022;15(2):209–23.

Fauziyah S, Karneli O. Pengaruh Brand Trust dan Brand Equity terhadap Loyalitas Konsumen pada Produk Kosmetik Wardah (Survey Konsumen pada PT. Paragon Technology And Innovation Cabang Pekanbaru). J Online Mhs Fak Ilmu Sos dan Ilmu Polit Univ Riau. 2016;3(2):1–9.

Mulyani T, Ramdan AM, Samsudin A. Mengukur Loyalitas Konsumen Melalui Ekuitas Merek Pada Produk Kosmetik. J EKOBIS DEWANTARA; Vol 3 No 2 J EKOBIS DEWANTARA [Internet]. 2020; Available from: https://jurnalfe.ustjogja.ac.id/index.php/ekobis/article/view/1753

Chinna D, Soegoto AS, Woran D, Produk AK, Merek C, Pengaruhnya DANH, et al. MANADO ANALYSIS OF PRODUCT QUALITY , BRAND IMAGE , AND PRICE INFLUENCE ON CONSUMER LOYALTY ON WARDAH COSMETIC PRODUCTS IN MANADO CITY Jurnal EMBA Vol . 10 No . 3 April 2022 , Hal . 295-306. 2022;10(3):295–308.

Pangastuti J, Prastiti E. Pengaruh Kualitas Produk Dan Harga Terhadap Keputusan Pembelian Produk Kosmetik Wardah Pada Counter Wardah Di Borobudur Kediri. 2019;2:69–84.

Astuti AR, Sudarusman E. Pengaruh Kualitas Produk, Harga, dan Citra Merek terhadap Loyalitas Pelanggan Kosmetik Natural Nusantara di Gunungkidul. Telaah Bisnis; Vol 20, No 1 Juli 2019DO - 1035917/tb.v20i1181 [Internet]. 2021 Jan 3; Available from: https://journal.stimykpn.ac.id/index.php/tb/article/view/181

Hakim BN, Purwoko B. TINJAUAN PUSTAKA Strategi Peran Strategi Pemasaran. 2019;3(3):261–78.

Irmayanti S, Annisa IT. Jurnal Ilmiah Manajemen dan Bisnis ( JIMBI ) Peran Mediasi Citra Merek terhadap Keputusan Pembelian Kosmetik Merek Lokal pada Wanita Urban The Role of Brand Image Mediation on Purchase Decisions for Local Brand Cosmetics in Urban Women. 2023;4(1):106–16.

Tilaar K, Mulyana A, Komaladewi R, Saefullah K. Uncertain Supply Chain Management Exploratory analysis of natural cosmetic products purchase intention : Evidence from Jakarta ,. 2023;11:1635–44.

Munerah S, Koay KY, Thambiah S. Factors influencing non-green consumers’ purchase intention: A partial least squares structural equation modelling (PLS-SEM) approach. J Clean Prod [Internet]. 2021;280:124192. Available from: https://www.sciencedirect.com/science/article/pii/S0959652620342372

Rubin CB, Brod B. Natural Does Not Mean Safe—The Dirt on Clean Beauty Products. JAMA Dermatology [Internet]. 2019 Dec 1;155(12):1344–5. Available from: https://doi.org/10.1001/jamadermatol.2019.2724

Suyanto N, Pramono S. The Effect of Green Brand Image in Building Green Brand Equity through Green Brand Trust in Cosmetics and Body Care Company The Body Shop Indonesia. Holist J Manag Res [Internet]. 2020 Nov 19;5(2 SE-). Available from: https://holistic.ubb.ac.id/index.php/holistic/article/view/1861

Pratiwi DD. Factors Affecting Green Purchase Behavior of Cosmetic Products Among Millennial Consumers in Indonesia. Relev J Manag Bus. 2020;3(2):126–35.

Mutiara A, Famiola M, Valendia IAS, Raihana J. Understanding the Antecedents of Green Cosmetics Purchase Among Indonesian Consumers. J Bus Manag Rev. 2023;4(7):510–23.

Pillai S. Profiling Green Consumers based on their purchase behaviour. Int J Information, Bus Manag. 2013;5(3):15.

Romadon Y. PENGARUH GREEN MARKETING TERHADAP BRAND IMAGE DAN STRUKTUR KEPUTUSAN PEMBELIAN ( Survei pada Followers Account Twitter @ PertamaxIND Pengguna Bahan Bakar Ramah lingkungan Pertamax Series ). 2014;15(1).

Wilson N, Theodorus E, Tan PH. ANALYSIS OF FACTORS INFLUENCING GREEN PURCHASE BEHAVIOR : A CASE STUDY OF THE COSMETICS INDUSTRY IN INDONESIA. 2018 Jun 5;2:453.

Soerjanatamihardja KA, Fachira I. STUDY OF PERCEPTION AND ATTITUDE TOWARDS GREEN MARKETING OF INDONESIAN COSMETICS CONSUMERS. 2017;6(1):160–72.

Kurnia SN, Mayangsari L. Barriers in Purchasing Green Cosmetic Products Among Indonesian Women. Malaysian J Soc Sci Humanit [Internet]. 2020 Aug 2;5(8 SE-Articles). Available from: https://msocialsciences.com/index.php/mjssh/article/view/465

Hoang HT, Moon J-Y, Lee Y-C. Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. Vol. 8, Cosmetics. 2021.

Ribeiro AS, Estanqueiro M, Oliveira MB, Sousa Lobo JM. Main Benefits and Applicability of Plant Extracts in Skin Care Products. Vol. 2, Cosmetics. 2015. p. 48–65.

Fowler JF, Woolery-Lloyd H, Waldorf H, Saini R. Innovations in natural ingredients and their use in skin care. J Drugs Dermatol [Internet]. 2010;9(6 Suppl):S72-81; quiz s82-3. Available from: http://europepmc.org/abstract/MED/20626172

Michalak M. Plant Extracts as Skin Care and Therapeutic Agents. Vol. 24, International Journal of Molecular Sciences. 2023.

Velázquez-Martínez V, Valles-Rosales D, Rodríguez-Uribe L, Laguna-Camacho JR, López-Calderón HD, Delgado E. Effect of Different Extraction Methods and Geographical Origins on the Total Phenolic Yield, Composition, and Antimicrobial Activity of Sugarcane Bagasse Extracts [Internet]. Vol. 9, Frontiers in Nutrition . 2022. Available from: https://www.frontiersin.org/articles/10.3389/fnut.2022.834557

Alara OR, Abdurahman NH, Ukaegbu CI. Extraction of phenolic compounds: A review. Curr Res Food Sci [Internet]. 2021;4:200–14. Available from: https://www.sciencedirect.com/science/article/pii/S2665927121000241

Kalasariya HS, Yadav VK, Yadav KK, Tirth V, Algahtani A, Islam S, et al. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. Vol. 26, Molecules. 2021.

Geraldes V, Pinto E. Mycosporine-Like Amino Acids (MAAs): Biology, Chemistry and Identification Features. Vol. 14, Pharmaceuticals. 2021.

Kageyama H, Waditee-Sirisattha R. Antioxidative, Anti-Inflammatory, and Anti-Aging Properties of Mycosporine-Like Amino Acids: Molecular and Cellular Mechanisms in the Protection of Skin-Aging. Vol. 17, Marine Drugs. 2019.

Figueroa FL. Mycosporine-Like Amino Acids from Marine Resource. Vol. 19, Marine Drugs. 2021.

López-Hortas L, Flórez-Fernández N, Torres MD, Ferreira-Anta T, Casas MP, Balboa EM, et al. Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics. Vol. 19, Marine Drugs. 2021.

Rajauria G. In-Vitro Antioxidant Properties of Lipophilic Antioxidant Compounds from 3 Brown Seaweed. Vol. 8, Antioxidants. 2019.

Maharany F, Nurjanah, Suwandi R, Anwar E, Hidayat T. KANDUNGAN SENYAWA BIOAKTIF RUMPUT LAUT Padina australis DAN Eucheuma cottonii SEBAGAI BAHAN BAKU KRIM TABIR SURYA Bioactive Compounds of Seaweed Padina australis and Eucheuma cottonii as Sunscreen Raw Materials. 2017;20(1).

Nosa SP, Karnila R, Diharmi A. Potensi Kappa Karaginan Rumput Laut ( Eucheuma Cottonii ) Sebagai Antioksidan Dan Inhibitor Enzim α -Glukosidase The Potential Of Kappa Carrageenan Seaweed (Eucheuma Cottonii) as an Antioxidant and α -Glucosidase Enzyme Inhibitor. Berk Perikan TERUBUK. 2020;48(2):1–10.

Syafitri T, Hafiludin, Chandra AB. PEMANFAATAN EKSTRAK RUMPUT LAUT ( Eucheuma cottonii ) DARI PERAIRAN SUMENEP SEBAGAI ANTIOKSIDAN. J Kelaut. 2022;15(2):160–8.

Nurjanah, Ramli RL, Jacoeb AM, Seulalae AV. BUBUR RUMPUT LAUT MERAH ( Eucheuma cottonii ) DAN COKELAT ( Sargassum sp .) Physicochemical and Antioxidant Characteristics of Body Scrub From Combination of. J Stand. 2021;23(3):227–40.

Cahyaningrum K, Husni A, Budhiyanti SA. AKTIVITAS ANTIOKSIDAN EKSTRAK RUMPUT LAUT COKELAT. J Mar Res. 2016;36(2):137–44.

Sinurat E, Suryaningrum D. AKTIVITAS ANTIOKSIDAN DAN SIFAT SENSORI TEH RUMPUT LAUT Sargassum sp . BERDASARKAN VARIASI LAMA PERENDAMAN. Inst Pertan Bogor. 2019;22:581–8.

Arifianti AE, Anwar E, Nurjanah. Aktivitas Penghambat Tirosinase dan Antioksidan Serbuk Rumput Laut dari Sargassum plagyphyllum Segar dan Kering. J Pengolah Has Perikan Indones. 2017;20(3):488–93.

Trijuliamos Manalu R, Asrida Sipayung E. Uji Aktivitas Antimikroba Ekstrak Etanol Rumput Laut Terhadap Propionibacterium Acnes Dan Aspergillus Niger Antimicrobial Activity Test of Ethanol Extract of Gracilaria Verrucosa Against Propionibacterium Acnes and Aspergillus Niger. JournalStikeskendalAcId [Internet]. 2020;9(2):101–6. Available from: http://www.journal.stikeskendal.ac.id/index.php/far/article/view/923

Nadiya I, Haryati S, Surilayani D, Hasanah AN, Serang K, Serang K. KARAKTERISTIK PEMANFAATAN EKSTRAK RUMPUT LAUT ( Kappaphycus alvarezii ) DAN TEH HIJAU ( Camellia sinensis ) SEBAGAI SEDIAAN HYDRATING TONER Characteristics of Seaweed ( Kappaphycus alvarezii ) and Green Tea ( Camellia sinensis ) Extracts as Hydrating Tone. 2023;13:157–68.

Yuliana. PENGARUH PERENDAMAN Eucheuma spinosum J. Agardh DALAM LARUTAN PUPUK PROVASOLI’S ENRICH SEAWATER TERHADAP LAJU PERTUMBUHAN SECARA IN VITRO. digilib.unhas.ac.id. 2013;

Sarita IDAADS, Subrata IM, Sumaryani NP, Rai IGA. Identifikasi Jenis Rumput Laut yang terdapat pada Ekosistem Alami Perairan Nusa Penida. J Edukasi Mat dan Sains. 2021;10(1):141–54.

Sunarpi, Ghazali M, Nikmatullah A, Lim PE, Phang SM. Diversity and distribution of natural populations of Eucheuma J. Agardh and Kappaphycus Doty in Nusa Tenggara Barat, Indonesia. Malaysian J Sci. 2013;32(SPEC. ISS.):127–40.

Noor JW. Biologi Laut, Suatu Pendekatan Ekologis. Jakarta: PT. Gramedia Pustaka Utama; 2006.

Hilmi Farnani Y, Cokrowati N, Farida N. Pengaruh Kedalaman Tanam Terhadap Pertumbuhan Eucheuma spinosum Pada Budidaya dengan Metode Rawai. J Kelaut. 2011;4(2):176–86.

Ali L, Khan AL, Al-Kharusi L, Hussain J, Al-Harrasi A. New α-Glucosidase Inhibitory Triterpenic Acid from Marine Macro Green Alga Codium dwarkense Boergs. Vol. 13, Marine Drugs. 2015. p. 4344–56.

Rajamani K, Balasubramanian T, Thirugnanasambandan SS. Bioassay-guided isolation of triterpene from brown alga Padina boergesenii possess anti-inflammatory and anti-angiogenic potential with kinetic inhibition of β-carotene linoleate system. LWT [Internet]. 2018;93:549–55. Available from: https://www.sciencedirect.com/science/article/pii/S0023643818303165

Yarkent Ç, Oncel SS. Recent Progress in Microalgal Squalene Production and Its Cosmetic Application. Biotechnol Bioprocess Eng. 2022;27(3):295–305.

Tran TVA, Nguyen VM, Nguyen TAN, Nguyen DHT, Tran DH, Bui TPT, et al. New triterpene sulfates from Vietnamese red alga Tricleocarpa fragilis and their α-glucosidase inhibitory activity. J Asian Nat Prod Res [Internet]. 2021 Jul 15;23(8):754–63. Available from: https://doi.org/10.1080/10286020.2020.1783658

Komala PTH, Husni A. Extraction Temperature Affect on Methanolic Extract Antioxidant Activity of Eucheuma spinosum. J Pengolah Has Perikan Indones. 2021;24(1):1–10.

Yanuarti R, Nurjanah N, Anwar E, Hidayat T. Profile of Phenolic and Antioxidants Activity from Seaweed Extract Turbinaria conoides and Eucheuma cottonii. J Pengolah Has Perikan Indones. 2017;20(2):230.

Aydin B. ANTIOXIDANT PROPERTIES OF SOME MACROALGAE. 2022;31(02):2145–52.

De La Fuente G, Fontana M, Asnaghi V, Chiantore M, Mirata S, Salis A, et al. The Remarkable Antioxidant and Anti-Inflammatory Potential of the Extracts of the Brown Alga Cystoseira amentacea var. stricta. Vol. 19, Marine Drugs. 2021.

Messyasz B, Michalak I, Łęska B, Schroeder G, Górka B, Korzeniowska K, et al. Valuable natural products from marine and freshwater macroalgae obtained from supercritical fluid extracts. J Appl Phycol [Internet]. 2018;30(1):591–603. Available from: https://doi.org/10.1007/s10811-017-1257-5

Korzeniowska K, Łęska B, Wieczorek PP. Isolation and determination of phenolic compounds from freshwater Cladophora glomerata. Algal Res [Internet]. 2020;48:101912. Available from: https://www.sciencedirect.com/science/article/pii/S2211926420300072

Heffernan N, Smyth TJ, FitzGerald RJ, Soler-Vila A, Brunton N. Antioxidant activity and phenolic content of pressurised liquid and solid–liquid extracts from four Irish origin macroalgae. Int J Food Sci Technol [Internet]. 2014 Jul 1;49(7):1765–72. Available from: https://doi.org/10.1111/ijfs.12512

Allahgholi L, Sardari RRR, Hakvåg S, Ara KZG, Kristjansdottir T, Aasen IM, et al. Composition analysis and minimal treatments to solubilize polysaccharides from the brown seaweed Laminaria digitata for microbial growth of thermophiles. J Appl Phycol [Internet]. 2020;32(3):1933–47. Available from: https://doi.org/10.1007/s10811-020-02103-6

Keskinkaya HB, Deveci E, Güneş E, Okudan EŞ, Akköz C, Gümüş NE, et al. Chemical Composition, In Vitro Antimicrobial and Antioxidant Activities of Marine Macroalgae Codium fragile (Suringar) Hariot TT - Deniz Makroalgi Codium fragile (Suringar) Hariot ’in Kimyasal Bileşimi, In-Vitro Antimikrobiyal ve Antioksidan Aktiviteleri. Commagene J Biol [Internet]. 2022;6(1):94–104. Available from: https://doi.org/10.31594/commagene.1084336

Setyorini D, Aanisah R, Machmudah S, Winardi S, Wahyudiono, Kanda H, et al. Extraction of Phytochemical Compounds from Eucheuma cottonii and Gracilaria sp using Supercritical CO2 Followed by Subcritical Water. MATEC Web Conf. 2018;156:4–9.

Fabrowska J, Messyasz B, Szyling J, Walkowiak J, Łęska B. Isolation of chlorophylls and carotenoids from freshwater algae using different extraction methods. Phycol Res [Internet]. 2018 Jan 1;66(1):52–7. Available from: https://doi.org/10.1111/pre.12191

Nutautaitė M, Racevičiūtė-Stupelienė A, Bliznikas S, Jonuškienė I, Karosienė J, Koreivienė J, et al. Evaluation of Phenolic Compounds and Pigments in Freshwater Cladophora glomerata Biomass from Various Lithuanian Rivers as a Potential Future Raw Material for Biotechnology. Vol. 14, Water. 2022.

Farasat N, Sheidai M, Riahi H, Koohdar F. Study of morphological, anatomical characteristics and metabolic assay of some Ulva species (sea lettuce) in the coastal waters of the Persian Gulf, Iran. Nov Biol Reper. 2022 Dec 1;9:222–35.

Etemadian Y, Shabanpour B, Ghaemi V, Kordjazi M. Compare the Chlorophyll Amount in Three Brown Algae Species of the Persian Gulf by Using Three Solvents and Applying Two Formulas Compare the Chlorophyll Amount in Three Brown Algae Species of the Persian Gulf by Using Three Solvents and Applying Two Form. 2017;(November).

Ismail MM, El Zokm GM, Miranda Lopez JM. Nutritional, bioactive compounds content, and antioxidant activity of brown seaweeds from the Red Sea. Front Nutr. 2023;10(July).

Halliwell B. Food-derived antioxidants. Evaluating their importance in food and in vivo. Food Sci Agric Chem. 1999;1:67–109.

WRESDIYATI T, HARTANTA ANSB, ASTAWAN M. The Effect of Seaweed Eucheuma cottonii on Superoxide Dismutase (SOD) Liver of Hypercholesterolemic Rats. HAYATI J Biosci [Internet]. 2008;15(3):105–10. Available from: https://www.sciencedirect.com/science/article/pii/S1978301916302777

Chakraborty K, Joseph D. Antioxidant Potential and Phenolic Compounds of Brown Seaweeds Turbinaria conoides and Turbinaria ornata (Class: Phaeophyceae). J Aquat Food Prod Technol [Internet]. 2016 Nov 16;25(8):1249–65. Available from: https://doi.org/10.1080/10498850.2015.1054540

BLOIS MS. Antioxidant Determinations by the Use of a Stable Free Radical. Nature [Internet]. 1958;181(4617):1199–200. Available from: https://doi.org/10.1038/1811199a0

Rocha-Guzmán NE, González-Laredo RF, Ibarra-Pérez FJ, Nava-Berúmen CA, Gallegos-Infante J-A. Effect of pressure cooking on the antioxidant activity of extracts from three common bean (Phaseolus vulgaris L.) cultivars. Food Chem [Internet]. 2007;100(1):31–5. Available from: https://www.sciencedirect.com/science/article/pii/S0308814605007776

Nenadis N, Wang L-F, Tsimidou MZ, Zhang H-Y. Radical Scavenging Potential of Phenolic Compounds Encountered in O. europaea Products as Indicated by Calculation of Bond Dissociation Enthalpy and Ionization Potential Values. J Agric Food Chem [Internet]. 2005 Jan 1;53(2):295–9. Available from: https://doi.org/10.1021/jf048776x

Masek A, Chrzescijanska E, Latos M, Zaborski M. Influence of hydroxyl substitution on flavanone antioxidants properties. Food Chem [Internet]. 2017;215:501–7. Available from: https://www.sciencedirect.com/science/article/pii/S030881461631216X

Zhao F, Zhang Q, Yan Y, Jia H, Zhao X, Li X, et al. Antioxidant constituents of chrysanthemum ‘jinsidaju’ cultivated in Kaifeng. Fitoterapia [Internet]. 2019;134:39–43. Available from: https://www.sciencedirect.com/science/article/pii/S0367326X18321695

Puente-Garza CA, Espinosa-Leal CA, García-Lara S. Steroidal Saponin and Flavonol Content and Antioxidant Activity during Sporophyte Development of Maguey (Agave salmiana). Plant Foods Hum Nutr [Internet]. 2018;73(4):287–94. Available from: https://doi.org/10.1007/s11130-018-0684-z

Siddiqui T, Zia MK, Ali SS, Rehman AA, Ahsan H, Khan FH. Reactive oxygen species and anti-proteinases. Arch Physiol Biochem [Internet]. 2016 Jan 1;122(1):1–7. Available from: https://doi.org/10.3109/13813455.2015.1115525

Harbeoui H, Bettaieb Rebey I, Ouerghemmi I, Aidi Wannes W, Zemni H, Zoghlami N, et al. Biochemical characterization and antioxidant activity of grape (Vitis vinifera L.) seed oils from nine Tunisian varieties. J Food Biochem [Internet]. 2018 Oct 1;42(5):e12595. Available from: https://doi.org/10.1111/jfbc.12595

Morais T, Cotas J, Pacheco D, Pereira L. Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients? Vol. 8, Cosmetics. 2021.

Alseekh S, Perez de Souza L, Benina M, Fernie AR. The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry [Internet]. 2020;174:112347. Available from: https://www.sciencedirect.com/science/article/pii/S0031942219307058

Tungmunnithum D, Tanaka N, Uehara A, Iwashina T. Flavonoids Profile, Taxonomic Data, History of Cosmetic Uses, Anti-Oxidant and Anti-Aging Potential of Alpinia galanga (L.) Willd. Vol. 7, Cosmetics. 2020.

Teo BSX, Gan RY, Abdul Aziz S, Sirirak T, Mohd Asmani MF, Yusuf E. In vitro evaluation of antioxidant and antibacterial activities of Eucheuma cottonii extract and its in vivo evaluation of the wound-healing activity in mice. J Cosmet Dermatol [Internet]. 2021 Mar 1;20(3):993–1001. Available from: https://doi.org/10.1111/jocd.13624

Sari M, Sofiana J, Safitri I, Helena S, Sciences N, Tanjungpura U, et al. ANTIOXIDANT AND ANTI-INFLAMMATORY ACTIVITIES FROM ETHANOL EXTRACT OF Eucheuma cottonii FROM LEMUKUTAN ISLAND WATERS WEST KALIMANTAN. 2021;17(4):247–53.

Hidayati JR, Karlina I, Ningsih DPN, Wijaya A, Bahry MS. Bioactive Compounds and Antioxidant Activity of Tropical Red Algae Gracilaria sp. from Bintan Island, Indonesia. IOP Conf Ser Earth Environ Sci [Internet]. 2023;1148(1):12004. Available from: https://dx.doi.org/10.1088/1755-1315/1148/1/012004

Sasadara MM V, Wirawan IGP. Effect of extraction solvent on total phenolic content, total flavonoid content, and antioxidant activity of Bulung Sangu (Gracilaria sp.) Seaweed. IOP Conf Ser Earth Environ Sci [Internet]. 2021;712(1):12005. Available from: https://dx.doi.org/10.1088/1755-1315/712/1/012005

Basir A, Desniar, Ristyanti WK, Tarman K. Physical treatments to induce the antibacterial and antioxidant activities of green algae Halimeda sp. from Seribu Islands, North Jakarta, Indonesia. IOP Conf Ser Earth Environ Sci [Internet]. 2020;414(1):12002. Available from: https://dx.doi.org/10.1088/1755-1315/414/1/012002

Kavitha K, Mahalakshmi K, Manam VK. In vitro antioxidant activity of methanolic extract of green alga Valoniopsis pachynema. World J Pharm Sci. 2015;

K. Kavitha KM and, Mana VK. Free radical scavenging activity of methanolic extract of green alga Valoniopsis pachynema. World J Pharm Sci. 2015;

Kavitha J, Palani S. PHYTOCHEMICAL SCREENING, GC-MS ANALYSIS AND ANTIOXIDANT ACTIVITY OF MARINE ALGAE CHLOROCOCCUM HUMICOLA. WORLD J Pharm Pharm Sci. 2016;5(6):1154–67.

Uma R, Sivasubramanian V, Devaraj SN. Evaluation of in vitro antioxidant activities and antiproliferative activity of green microalgae , Desmococcus olivaceous and Chlorococcum humicola. 2011;2(3):82–93.

Moheimanian N, Firuzi O, Sohrabipour J, Jassbi AR. Assessment of Phenolic Contents and Antibacterial, Cytotoxic, and Antioxidant Activities of Five Brown Algae from the Persian Gulf. Iran J Sci Technol Trans A Sci [Internet]. 2021;45(6):1869–77. Available from: https://doi.org/10.1007/s40995-021-01187-0

Bhuyar P, Sundararaju S, Rahim MHA, Unpaprom Y, Maniam GP, Govindan N. Antioxidative study of polysaccharides extracted from red (Kappaphycus alvarezii), green (Kappaphycus striatus) and brown (Padina gymnospora) marine macroalgae/seaweed. SN Appl Sci [Internet]. 2021;3(4):485. Available from: https://doi.org/10.1007/s42452-021-04477-9

Junopia AC, Natsir H, Dali S. Effectiveness of Brown Algae (Padina australis) Extract as Antioxidant Agent. J Phys Conf Ser [Internet]. 2020;1463(1):12012. Available from: https://dx.doi.org/10.1088/1742-6596/1463/1/012012

Sami FJ, Soekamto NH. Antioxidant Activity , Toxicity Effect and Phytochemical Screening of Some Brown Algae Padina australis Extracts from Dutungan Island of South Sulawesi Indonesia. 2020;03(05):16–21.

Sanger G, Wonggo D, Montolalu LADY, Dotulong V. Pigments constituents, phenolic content and antioxidant activity of brown seaweed Sargassum sp. IOP Conf Ser Earth Environ Sci [Internet]. 2022;1033(1):12057. Available from: https://dx.doi.org/10.1088/1755-1315/1033/1/012057

Marraskuranto E, Nursid M, Utami S, Setyaningsih I, Tarman K. Kandungan Fitokimia , Potensi Antibakteri dan Antioksidan Hasil Ekstraksi Caulerpa racemosa dengan Pelarut Berbeda HASIL EKSTRAKSI Caulerpa racemosa DENGAN PELARUT BERBEDA Phytochemical Content , Antibacterial , and Antioxidant Potency of Caulerpa racemos. 2021;(June).

Astuti NA, Cokrowati N, Mukhlis A. Cultivation of Seagrapes ( Caulerpa lentillifera ) in Controlled Containers with the Addition of Different Doses of Fertilizers. 2021;2(1):1–6.

Lam M, Hu A, Fleming P, Lynde CW. The Impact of Acne Treatment on Skin Bacterial Microbiota: A Systematic Review. J Cutan Med Surg [Internet]. 2021 Aug 15;26(1):93–7. Available from: https://doi.org/10.1177/12034754211037994

Claudel J-P, Auffret N, Leccia M-T, Poli F, Corvec S, Dréno B. Staphylococcus epidermidis: A Potential New Player in the Physiopathology of Acne? Dermatology [Internet]. 2019 May 21;235(4):287–94. Available from: https://doi.org/10.1159/000499858

Cui SM, Li T, Wang Q, He KK, Zheng YM, Liang HY, et al. Antibacterial Effects of Schisandra chinensis Extract on Escherichia coli and its Applications in Cosmetic. Curr Microbiol [Internet]. 2020;77(5):865–74. Available from: https://doi.org/10.1007/s00284-019-01813-6

Wang Q, Cui S, Zhou L, He K, Song L, Liang H, et al. Effect of cosmetic chemical preservatives on resident flora isolated from healthy facial skin. J Cosmet Dermatol [Internet]. 2019 Apr 1;18(2):652–8. Available from: https://doi.org/10.1111/jocd.12822

Saatci C, Erdem Y, Bayramov R, Akalın H, Tascioglu N, Ozkul Y. Effect of sodium benzoate on DNA breakage, micronucleus formation and mitotic index in peripheral blood of pregnant rats and their newborns. Biotechnol Biotechnol Equip [Internet]. 2016 Nov 1;30(6):1179–83. Available from: https://doi.org/10.1080/13102818.2016.1224979

Matwiejczuk N, Galicka A, Brzóska MM. Review of the safety of application of cosmetic products containing parabens. J Appl Toxicol. 2020;40(1):176–210.

Nuria MC, Faizatun A, Sumantri. JI AKTIVITAS ANTIBAKTERI EKSTRAK ETANOL DAUN JARAK PAGAR (Jatropha curcas L) TERHADAP BAKTERI Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Dan Salmonella typhi ATCC 1408. MEDIAGRO. 2009;5(2):26–37.

Murphy CM. Plant Products as Antimicrobial Agents. Clin Microbiol Rev [Internet]. 1999 Oct 1;12(4):564–82. Available from: https://doi.org/10.1128/cmr.12.4.564

Masduki I. Efek antibakteri ekstrak biji pinang (Areca catechu) terhadap S. aureus dan E. coli. Cermin Dunia Kedokt. 1996;109(2).

Klomjit A, Praiboon J, Tiengrim S, Chirapart A, Thamlikitkul V. Phytochemical composition and antibacterial activity of brown seaweed, padina australis against human pathogenic bacteria. J Fish Environ. 2021;45(1):8–22.

DiNardo JC, Downs CA. Dermatological and environmental toxicological impact of the sunscreen ingredient oxybenzone/benzophenone-3. J Cosmet Dermatol. 2018;17(1):15–9.

Warshaw EM, Buonomo M, DeKoven JG, Pratt MD, Reeder MJ, Silverberg JI, et al. Importance of Supplemental Patch Testing Beyond a Screening Series for Patients With Dermatitis: The North American Contact Dermatitis Group Experience. JAMA Dermatology [Internet]. 2021 Dec 1;157(12):1456–65. Available from: https://doi.org/10.1001/jamadermatol.2021.4314

Verhulst L, Goossens A. Cosmetic components causing contact urticaria: a review and update. Contact Dermatitis. 2016;75(6):333–44.

Heurung AR, Raju SI, Warshaw EM. Adverse Reactions to Sunscreen Agents: Epidemiology, Responsible Irritants and Allergens, Clinical Characteristics, and Management. Dermatitis [Internet]. 2014 Dec 1;25(6):289–326. Available from: https://www.liebertpub.com/doi/abs/10.1097/DER.0000000000000079

Downs CA, Kramarsky-Winter E, Segal R, Fauth J, Knutson S, Bronstein O, et al. Toxicopathological Effects of the Sunscreen UV Filter, Oxybenzone (Benzophenone-3), on Coral Planulae and Cultured Primary Cells and Its Environmental Contamination in Hawaii and the U.S. Virgin Islands. Arch Environ Contam Toxicol [Internet]. 2016;70(2):265–88. Available from: https://doi.org/10.1007/s00244-015-0227-7

Roberto D, Lucia B, Cinzia C, Donato G, Elisabetta D, Paola A, et al. Sunscreens Cause Coral Bleaching by Promoting Viral Infections. Environ Health Perspect [Internet]. 2008 Apr 1;116(4):441–7. Available from: https://doi.org/10.1289/ehp.10966

Amador-Castro F, Rodriguez-Martinez V, Carrillo-Nieves D. Robust natural ultraviolet filters from marine ecosystems for the formulation of environmental friendlier bio-sunscreens. Sci Total Environ. 2020;749:141576.

Nunes AR, Vieira ÍGP, Queiroz DB, Leal ALAB, Maia Morais S, Muniz DF, et al. Use of Flavonoids and Cinnamates, the Main Photoprotectors with Natural Origin. Adv Pharmacol Pharm Sci [Internet]. 2018 Jan 1;2018(1):5341487. Available from: https://doi.org/10.1155/2018/5341487

Mansuri R, Diwan A, Kumar H, Dangwal K, Yadav D, Mansuri R, et al. Potential of Natural Compounds as Sunscreen Agents. 2021;15(29):47–56.

Derikvand P, Llewellyn CA, Purton S. Cyanobacterial metabolites as a source of sunscreens and moisturizers: a comparison with current synthetic compounds. Eur J Phycol [Internet]. 2017 Jan 2;52(1):43–56. Available from: https://doi.org/10.1080/09670262.2016.1214882

Rastogi RP, Sonani RR, Madamwar D. Chapter 2 - UV Photoprotectants From Algae—Synthesis and Bio-Functionalities. In: Rastogi RP, Madamwar D, Pandey ABT-AGC, editors. Amsterdam: Elsevier; 2017. p. 17–38. Available from: https://www.sciencedirect.com/science/article/pii/B9780444637840000023

Singh DK, Pathak J, Pandey A, Singh V, Ahmed H, Rajneesh, et al. Chapter 15 - Ultraviolet-screening compound mycosporine-like amino acids in cyanobacteria: biosynthesis, functions, and applications. In: Singh PK, Kumar A, Singh VK, Shrivastava AKBT-A in CB, editors. Academic Press; 2020. p. 219–33. Available from: https://www.sciencedirect.com/science/article/pii/B9780128193112000152

Rosic NN. Mycosporine-Like Amino Acids: Making the Foundation for Organic Personalised Sunscreens. Vol. 17, Marine Drugs. 2019.

Shick JM, Dunlap WC. Mycosporine-like amino acids and related Gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu Rev Physiol. 2002;64:223–262.

Wada N, Sakamoto T, Matsugo S. Mycosporine-Like Amino Acids and Their Derivatives as Natural Antioxidants. Vol. 4, Antioxidants. 2015. p. 603–46.

Rastogi RP, Sonani RR, Madamwar D, Incharoensakdi A. Characterization and antioxidant functions of mycosporine-like amino acids in the cyanobacterium Nostoc sp. R76DM. Algal Res [Internet]. 2016;16:110–8. Available from: https://www.sciencedirect.com/science/article/pii/S2211926416300819

Whitehead K, Hedges JI. Photodegradation and photosensitization of mycosporine-like amino acids. J Photochem Photobiol B Biol [Internet]. 2005;80(2):115–21. Available from: https://www.sciencedirect.com/science/article/pii/S1011134405000679

Zubia M, Freile-Pelegrín Y, Robledo D. Photosynthesis, pigment composition and antioxidant defences in the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta) under environmental stress. J Appl Phycol [Internet]. 2014;26(5):2001–10. Available from: https://doi.org/10.1007/s10811-014-0325-3

Álvarez-Gómez F, Korbee N, Figueroa FL. Effects of UV Radiation on Photosynthesis, Antioxidant Capacity and the Accumulation of Bioactive Compounds in Gracilariopsis longissima, Hydropuntia cornea and Halopithys incurva (Rhodophyta). J Phycol [Internet]. 2019 Dec 1;55(6):1258–73. Available from: https://doi.org/10.1111/jpy.12899

Zepeda E, Freile-Pelegrín Y, Robledo D. Nutraceutical assessment of Solieria filiformis and Gracilaria cornea (Rhodophyta) under light quality modulation in culture. J Appl Phycol [Internet]. 2020;32(4):2363–73. Available from: https://doi.org/10.1007/s10811-019-02023-0

Apt KE, Collier JL, Grossman AR. Evolution of the Phycobiliproteins. J Mol Biol [Internet]. 1995;248(1):79–96. Available from: https://www.sciencedirect.com/science/article/pii/S0022283685702033

Pan-utai W, Iamtham S. Extraction, purification and antioxidant activity of phycobiliprotein from Arthrospira platensis. Process Biochem [Internet]. 2019;82:189–98. Available from: https://www.sciencedirect.com/science/article/pii/S1359511319302612

Braune S, Krüger-Genge A, Kammerer S, Jung F, Küpper J-H. Phycocyanin from Arthrospira platensis as Potential Anti-Cancer Drug: Review of In Vitro and In Vivo Studies. Vol. 11, Life. 2021.

Ismail GA, El-Sheekh MM, Samy RM, Gheda SF. Antimicrobial, Antioxidant, and Antiviral Activities of Biosynthesized Silver Nanoparticles by Phycobiliprotein Crude Extract of the Cyanobacteria Spirulina platensis and Nostoc linckia. Bionanoscience [Internet]. 2021;11(2):355–70. Available from: https://doi.org/10.1007/s12668-021-00828-3

Qiang X, Wang L, Niu J, Gong X, Wang G. Phycobiliprotein as fluorescent probe and photosensitizer: A systematic review. Int J Biol Macromol [Internet]. 2021;193:1910–7. Available from: https://www.sciencedirect.com/science/article/pii/S014181302102420X

Murthy KNC, Vanitha A, Rajesha J, Swamy MM, Sowmya PR, Ravishankar GA. In vivo antioxidant activity of carotenoids from Dunaliella salina — a green microalga. Life Sci [Internet]. 2005;76(12):1381–90. Available from: https://www.sciencedirect.com/science/article/pii/S0024320504009099

Saini RK, Keum Y-S. Carotenoid extraction methods: A review of recent developments. Food Chem [Internet]. 2018;240:90–103. Available from: https://www.sciencedirect.com/science/article/pii/S0308814617312529

Stahl W, Heinrich U, Jungmann H, Sies H, Tronnier H. Carotenoids and carotenoids plus vitamin E protect against ultraviolet light–induced erythema in humans123. Am J Clin Nutr [Internet]. 2000;71(3):795–8. Available from: https://www.sciencedirect.com/science/article/pii/S0002916523070739

Baswan SM, Klosner AE, Weir C, Salter-Venzon D, Gellenbeck KW, Leverett J, et al. Role of ingestible carotenoids in skin protection: A review of clinical evidence. Photodermatol Photoimmunol Photomed [Internet]. 2021 Nov 1;37(6):490–504. Available from: https://doi.org/10.1111/phpp.12690

Minsat L, Peyrot C, Brunissen F, Renault J-H, Allais F. Synthesis of Biobased Phloretin Analogues: An Access to Antioxidant and Anti-Tyrosinase Compounds for Cosmetic Applications. Vol. 10, Antioxidants. 2021.

Li J, Feng L, Liu L, Wang F, Ouyang L, Zhang L, et al. Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur J Med Chem [Internet]. 2021;224:113744. Available from: https://www.sciencedirect.com/science/article/pii/S0223523421005936

Lall N, Kishore N. Are plants used for skin care in South Africa fully explored? J Ethnopharmacol [Internet]. 2014;153(1):61–84. Available from: https://www.sciencedirect.com/science/article/pii/S0378874114001342

Wang Q, Lu J, Jin Z, Chen K, Zhao M, Sun Y. Study on the Structure and Skin Moisturizing Properties of Hyaluronic Acid Viscose Fiber Seamless Knitted Fabric for Autumn and Winter. Vol. 15, Materials. 2022.

Lourith N, Pungprom S, Kanlayavattanakul M. Formulation and efficacy evaluation of the safe and efficient moisturizing snow mushroom hand sanitizer. J Cosmet Dermatol [Internet]. 2021 Feb 1;20(2):554–60. Available from: https://doi.org/10.1111/jocd.13543

Marseglia A, Licari A, Agostinis F, Barcella A, Bonamonte D, Puviani M, et al. Local rhamnosoft, ceramides and L-isoleucine in atopic eczema: a randomized, placebo controlled trial. Pediatr Allergy Immunol [Internet]. 2014 May 1;25(3):271–5. Available from: https://doi.org/10.1111/pai.12185

Lu Y, Zhang W, Zhou L, Xiong Y, Liu Q, Shi X, et al. The moisturizing effect of Capparis spinosa fruit extract targeting filaggrin synthesis and degradation. J Cosmet Dermatol [Internet]. 2023 Feb 1;22(2):651–60. Available from: https://doi.org/10.1111/jocd.15461

Patel NB, Tailor V, Rabadi M, Jain A. Role of marine macroalgae in Skin hydration and photoprotection benefits : A review Role of marine macroalgae in Skin hydration and photoprotection benefits : A review. 2020;(September).

Shafie MH, Kamal ML, Zulkiflee FF, Hasan S, Uyup NH, Abdullah S, et al. Application of Carrageenan extract from red seaweed (Rhodophyta) in cosmetic products: A review. J Indian Chem Soc [Internet]. 2022;99(9):100613. Available from: https://www.sciencedirect.com/science/article/pii/S0019452222002758

FITZPATRICK RE, ROSTAN EF. Double-Blind, Half-Face Study Comparing Topical Vitamin C and Vehicle for Rejuvenation of Photodamage. Dermatologic Surg [Internet]. 2002;28(3). Available from: https://journals.lww.com/dermatologicsurgery/fulltext/2002/03000/double_blind,_half_face_study_comparing_topical.7.aspx

Morganti P, Bruno C, Guarneri F, Cardillo A, Del Ciotto P, Valenzano F. Role of topical and nutritional supplement to modify the oxidative stress*. Int J Cosmet Sci [Internet]. 2002 Dec 1;24(6):331–9. Available from: https://doi.org/10.1046/j.1467-2494.2002.00159.x

Cao L, Lee SG, Lim KT, Kim H-R. Potential Anti-Aging Substances Derived from Seaweeds. Vol. 18, Marine Drugs. 2020.

Makrantonaki E, Adjaye J, Herwig R, Brink TC, Groth D, Hultschig C, et al. Age-specific hormonal decline is accompanied by transcriptional changes in human sebocytes in vitro. Aging Cell [Internet]. 2006 Aug 1;5(4):331–44. Available from: https://doi.org/10.1111/j.1474-9726.2006.00223.x

Pientaweeratch S, Panapisal V, Tansirikongkol A. Antioxidant, anti-collagenase and anti-elastase activities of Phyllanthus emblica, Manilkara zapota and silymarin: an in vitro comparative study for anti-aging applications. Pharm Biol [Internet]. 2016 Sep 1;54(9):1865–72. Available from: https://doi.org/10.3109/13880209.2015.1133658

Jesumani V, Du H, Aslam M, Pei P, Huang N. Potential Use of Seaweed Bioactive Compounds in Skincare—A Review. Vol. 17, Marine Drugs. 2019.

Wang L, Lee W, Oh JY, Cui YR, Ryu B, Jeon Y-J. Protective Effect of Sulfated Polysaccharides from Celluclast-Assisted Extract of Hizikia fusiforme Against Ultraviolet B-Induced Skin Damage by Regulating NF-κB, AP-1, and MAPKs Signaling Pathways In Vitro in Human Dermal Fibroblasts. Vol. 16, Marine Drugs. 2018.

Ryu B, Qian Z-J, Kim M-M, Nam KW, Kim S-K. Anti-photoaging activity and inhibition of matrix metalloproteinase (MMP) by marine red alga, Corallina pilulifera methanol extract. Radiat Phys Chem [Internet]. 2009;78(2):98–105. Available from: https://www.sciencedirect.com/science/article/pii/S0969806X08002260

Tarman K, Sadi U, Santoso J, Hardjito L. Carrageenan and its Enzymatic Extraction. In: Encyclopedia of Marine Biotechnology [Internet]. 2020. p. 147–59. Available from: https://doi.org/10.1002/9781119143802.ch7

Campo VL, Kawano DF, Silva DB da, Carvalho I. Carrageenans: Biological properties, chemical modifications and structural analysis – A review. Carbohydr Polym [Internet]. 2009;77(2):167–80. Available from: https://www.sciencedirect.com/science/article/pii/S0144861709000459

Mehta AS, Mody KH, Iyer A, Ghosh PK. Preparation of semi-refined κ -c arrageenan : Recycling of alkali solution and recovery of alkali from spent liquor. 2008;15(January):45–52.

Zia KM, Tabasum S, Nasif M, Sultan N, Aslam N, Noreen A, et al. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int J Biol Macromol [Internet]. 2017;96:282–301. Available from: https://www.sciencedirect.com/science/article/pii/S0141813016313873

Fransiska D, Darmawan M, Sinurat E, Sedayu BB, Wardhana YW, Herdiana Y, et al. Characteristics of Oil in Water (o/w) Type Lotions Incorporated with Kappa/Iota Carrageenan. IOP Conf Ser Earth Environ Sci [Internet]. 2021;715(1):12050. Available from: https://dx.doi.org/10.1088/1755-1315/715/1/012050

Refbacks

  • Saat ini tidak ada refbacks.