Isolation and Characterization of Microcrystalline Cellulose Derived from Plants as Excipient in Tablet : A Review

Nagina Gulab Belali, Anis Yohana Chaerunisaa, Taofik Rusdiana

Abstract

Microcrystalline cellulose (MCC) is a versatile and frequently used material in different industries such as pharmaceuticals production, medical, cosmetics, and food industry.  Its qualities of being inert, economic, compatibility, compatibility, non-toxicity, biodegradability, good mechanical properties, high surface area, variety and availability of different grades and biocompatibility has made it very popular. Many research has been done on MCC to isolate it from different plant sources that are economical and eco-friendly. MCC is extracted from α cellulose that is abundant in nature as most of MCC is produced from wood. However, new eco-friendly sources with changes in methods of isolation have been applied for the production of MCC. In this review MCC isolated from different plant-based resources, extraction process parameters, the origin of raw material and its influence on critical material attributes of MCC has been outlined and discussed thoroughly. Since these critical material attributes have a significant effect on tablet making process parameters (compressibility, compatibility and etc) and its post-compression characters.

Keywords: Microcrystalline cellulose, isolation, characterization, raw material, tablet 

Full Text:

PDF HTML

References

Dutta R, Nath Y, Ochubiojo ME, Kumar A. Colloids and Surfaces B : Biointerfaces Extraction and characterization of microcrystalline cellulose from fodder grass ; Setaria glauca ( L ) P . Beauv , and its potential as a drug delivery vehicle for isoniazid , a first line antituberculosis drug. Colloids Surfaces B Biointerfaces [Internet]. Elsevier B.V.; 2013;108:85–9. Available from: http://dx.doi.org/10.1016/j.colsurfb.2013.02.016

OYENIYI YJ, ITIOLA OA. The Phyicochemical characteristic of microcrystalline cellulose, derived from sawdust, Agricultural waste products. Int J Pharm Pharm Sci. 2012;4(2):3–6.

Suzuki T, Nakagami H. Effect of crystallinity of microcrystalline cellulose on the compactability and dissolution of tablets. 1999;47:225–30.

Abdul Khalil H. P. S.1 *, Tze Kiat Lai1 , Ying Ying Tye1 , M. T. Paridah2 , M. R. Nurul Fazita1 , A. A. Azniwati1 , Rudi Dungani3 and SR. preparation and Characterization of Microcrystalline Cellulose from Sacred Bali Bamboo as Reinforcing Filler in Seaweed-based Composite Film. fibers Polym. 2018;19(2):423–34.

Doelker E, D. M, H. I, P. H-D. COMPARATIVE TABLETING PROPERTIES OF SIXTEEN. 1987;13:1847–75.

Shlieout G, Arnold K. Powder and Mechanical Properties of Microcrystalline Cellulose With Different Degrees of Polymerization. 2002;3(2):1–10.

Bolhuis GK, Armstrong NA. . Excipients for direct compaction—an update. Int J pharmceutical Dev Technol [Internet]. 2006;11(1):111–24. Available from: https://doi.org/10.1080/10837450500464255

Pate NK, Upadhyay AH, Bergum JS, Reier E. An evaluation of microcrystalline cellulose and lactose excipients using an instrumented single station tablet press. 1994;5173(94).

Rowe R, McKillop A, Bray D. The effect of batch and source variation on the crystallinity of microcrystalline cellulose. Indian J Pharm Sci [Internet]. 1994;101(1–2):169–72. Available from: https://doi.org/10.1016/0378-5173(94)90087-6

Awa K, Shinzawa H, Ozaki Y. The Effect of Microcrystalline Cellulose Crystallinity on the Hydrophilic Property of Tablets and the Hydrolysis of Acetylsalicylic Acid as Active Pharmaceutical Ingredient Inside Tablets. 2015;16(4):865–70.

Landína M, R.Martínez PL, Gómez A, Soutoa C, Concheiroa A, Rowe RC. Effect of country of origin on the properties of microcrystalline cellulose. Int J Pharm [Internet]. 1993;91(2–3):123–31. Available from: https://doi.org/10.1016/0378-5173(93)90331

Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B. Microcrystalline cellulose , a direct compression binder in a quality by design environment — A review. Elsevier BV [Internet]. Elsevier B.V.; 2014; Available from: http://dx.doi.org/10.1016/j.ijpharm.2014.06.055

Trache D, Hussin MH, Tan C, Chuin H, Sabar S, Fazita MRN, et al. International Journal of Biological Macromolecules Microcrystalline cellulose : Isolation , characterization and bio-composites application — A review. Int J Biol Macromol [Internet]. Elsevier B.V.; 2016;93:789–804. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2016.09.056

Oliveira RL De, Assunc RMN De, Carvalho GO, Filho GR, Messaddeq Y, Jose S. Synthesis and characterization of microcrystalline cellulose produced from bacterial cellulose. 2011;703–9.

Jahan MS, Saeed A, He Z. Jute as raw material for the preparation of microcrystalline cellulose. 2011;451–9.

Sun CC. Mechanism of moisture induced variations in true density and compaction properties of microcrystalline cellulose. Indian J Pharm Sci. 2008;346:93–101.

Battista OA, Smith PA, Hook M. Microcrystalline cellulose the oldest polymer finds new industrial uses. Ind Eng Chem. 1962;

Trache D, Donnot A, Khimeche K, Benelmir R, Brosse N. Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohydr Polym [Internet]. Elsevier Ltd.; 2014;104:223–30. Available from: http://dx.doi.org/10.1016/j.carbpol.2014.01.058

Haafiz MKM, Hassan A, Zakaria Z, Inuwa IM. Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydr Polym [Internet]. Elsevier Ltd.; 2014;103:119–25. Available from: http://dx.doi.org/10.1016/j.carbpol.2013.11.055

El-zawawy MMIWK, Ju Y, Heinze T. Cellulose and microcrystalline cellulose from rice straw and banana plant waste : preparation and characterization. 2013;2403–16.

Sheng S, Meiling Z, Chen L, Wensheng H, Zhifeng Y. Extraction and characterization of microcrystalline cellulose from waste cotton fabrics via hydrothermal method. Waste Manag [Internet]. Elsevier Ltd; 2018;82:139–46. Available from: https://doi.org/10.1016/j.wasman.2018.10.023

Kale RD, Shobha P, Vikrant B. Extraction of Microcrystalline Cellulose from Cotton Sliver and Its Comparison with Commercial Microcrystalline Cellulose. J Polym Environ. Springer US; 2017;0(0):0.

Kia L, Jawaid M, Ariffin H, Alothman OY. International Journal of Biological Macromolecules Isolation and characterization of microcrystalline cellulose from roselle fibers. Int J Biol Macromol [Internet]. Elsevier B.V.; 2017;103:931–40. Available from: http://dx.doi.org/10.1016/j.ijbiomac.2017.05.135

Liu Y, Liu A, Ibrahim SA, Yang H, Huang W. International Journal of Biological Macromolecules Isolation and characterization of microcrystalline cellulose from pomelo peel. Int J Biol Macromol [Internet]. Elsevier B.V.; 2018;111:717–21. Available from: https://doi.org/10.1016/j.ijbiomac.2018.01.098

Zhao T, Chen Z, Lin X, Ren Z, Li B, Zhang Y. Preparation and characterization of microcrystalline cellulose ( MCC ) from tea waste. Carbohydr Polym [Internet]. Elsevier; 2018;184(September 2017):164–70. Available from: https://doi.org/10.1016/j.carbpol.2017.12.024

Thoorens G, Krier F, Rozet E, Carlin B, Evrard B. Understanding the impact of microcrystalline cellulose physicochemical properties on tabletability. Int J Pharm [Internet]. Elsevier B.V.; 2015;490(1–2):47–54. Available from: http://dx.doi.org/10.1016/j.ijpharm.2015.05.026

Joseph Kushner I, Langdon BA, Hiller JONI, Carlson GT. Examining the Impact of Excipient Material Property Variation on Drug Product Quality Attributes : A Quality-By-Design Study for a Roller Compacted , Immediate Release Tablet. 2011;100(6):11–3.

Gamble JF, Chiu W, Tobyn M. Investigation into the impact of sub-populations of agglomerates on the particle size distribution and flow properties of conventional microcrystalline cellulose grades. 2011;16(May 2010):542–8.

Friedman R. Pharmaceutical quality systems: US perspective. Pharmaceutical. In: Quality System (ICH Q10) Conference. 2011.

Adel AM, El-wahab ZHA, Ibrahim AA, Al-shemy MT. Characterization of microcrystalline cellulose prepared from lignocellulosic materials . Part II : Physicochemical properties. Carbohydr Polym [Internet]. Elsevier Ltd.; 2011;83(2):676–87. Available from: http://dx.doi.org/10.1016/j.carbpol.2010.08.039

Refbacks

  • There are currently no refbacks.