Characterization Methods of Amorphous Form Stability in Solid Dispersion : A Review

Maria Elvina Tresia Butarbutar, Nasrul Wathoni, Yoga Windu Wardhana

Abstract

Solubility as a cause of ineffective active pharmaceutical ingredients (API) needs to be a concern. One of the solutions to increase the solubility by choosing active ingredients in the amorphous form. However, the amorphous form tends to be unstable because it has high Gibbs free energy and molecular mobility. To overcome those properties solid dispersion methods can be an answer. The dispersion of the amorphous form in the polymer is expected to prevent the transformation of API to crystal stable form. The solid dispersion (SD) resulted needs for physicochemical characterization to prove the ability of SD to maintain the amorphous form. Therefore, the physicochemical properties of the amorphous solid dispersions (ASDs) have to analyze there in any interactions that are able to occur between the drug and the polymer. Also for evaluate the stability of the ASDs within a certain period. In the article presents, some articles related with ASDs and its characterization will studying, include several product on the market as example. The number of literature used in this article is 69 articles.

Keywords: Solubility, amorphous for, solid dispersion, characterization ASDs.

Full Text:

PDF HTML

References

Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65(1):315–499.

Ku MS, Dulin W. A biopharmaceutical classification-based Right-First-Time formulation approach to reduce human pharmacokinetic variability and project cycle time from First-In-Human to clinical Proof-Of-Concept. Pharm Dev Technol. 2012;17(3):285–302.

Di L, Fish P V., Mano T. Bridging solubility between drug discovery and development. Drug Discov Today. 2012;17(9–10):486–95.

Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, et al. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci. 2014;9(6):304–16.

Sachin Parmar, Amit Gangwal NSD.Scholar.Scholars Research Library. 2011;2(4):373–83.

Mansour RSH, Deb PK, Tekade RK. Role of Amorphous State in Drug Delivery. Dosage Form Design Parameters. 2018. 105–154 p.

He Y, Ho C. Amorphous Solid Dispersions: Utilization and Challenges in Drug Discovery and Development. J Pharm Sci. 2015;104(10):3237–58.

Kumar DP, Dispersions S, Kumar DP, Vandana A. Journal of Pharmaceutical and Scientific Innovation SOLID DISPERSIONS : A REVIEW. 2012;1(June):27–34.

Jermain S V., Brough C, Williams RO. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery – An update. Int J Pharm. 2018;535(1–2):379–92.

Baghel S, Cathcart H, O’Reilly NJ. Theoretical and experimental investigation of drug-polymer interaction and miscibility and its impact on drug supersaturation in aqueous medium. Eur J Pharm Biopharm. 2016;107:16–31. Available from:

Mazumder S, Dewangan AK, Pavurala N. Enhanced dissolution of poorly soluble antiviral drugs from nanoparticles of cellulose acetate based solid dispersion matrices. Asian J Pharm Sci. 2017;12(6):532–41.

Sathigari SK, Radhakrishnan VK, Davis VA, Parsons DL, Babu RJ. Amorphous-state characterization of efavirenz-polymer hot-melt extrusion systems for dissolution enhancement. J Pharm Sci. 2012;101(9):3456–64.

Gao N, Guo M, Fu Q, He Z. Application of hot melt extrusion to enhance the dissolution and oral bioavailability of oleanolic acid. Asian J Pharm Sci. 2017;12(1):66–72.

Herbrink M, Schellens JHM, Beijnen JH, Nuijen B. Improving the solubility of nilotinib through novel spray-dried solid dispersions. Int J Pharm. 2017;529(1–2):294–302.

Ma X, Huang S, Lowinger MB, Liu X, Lu X, Su Y, et al. Influence of mechanical and thermal energy on nifedipine amorphous solid dispersions prepared by hot melt extrusion: Preparation and physical stability. Int J Pharm. 2019;561:324–34.

Van Drooge DJ, Hinrichs WLJ, Visser MR, Frijlink HW. Characterization of the molecular distribution of drugs in glassy solid dispersions at the nano-meter scale, using differential scanning calorimetry and gravimetric water vapour sorption techniques. Int J Pharm. 2006;310(1–2):220–9.

Paudel A, Worku ZA, Meeus J, Guns S, Van Den Mooter G. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: Formulation and process considerations. Int J Pharm. 2013;453(1):253–84.

Shah S, Maddineni S, Lu J, Repka MA. Melt extrusion with poorly soluble drugs. Int J Pharm. 2013;453(1):233–52.

Tran P, Pyo Y-C, Kim D-H, Lee S-E, Kim J-K, Park J-S. Overview of the Manufacturing Methods of Solid Dispersion Technology for Improving the Solubility of Poorly Water-Soluble Drugs and Application to Anticancer Drugs. Pharmaceutics. 2019;11(3):132.

Mehenni L, Lahiani-Skiba M, Ladam G, Hallouard F, Skiba M. Preparation and Characterization of Spherical Amorphous Solid Dispersion with Amphotericin B. Pharmaceutics. 2018;10(4):235.

Li Y, He ZD, Zheng QE, Hu C, Lai WF. Hydroxypropyl-β-cyclodextrin for delivery of baicalin via inclusion complexation by supercritical fluid encapsulation. Molecules. 2018;23(5).

Milovanovic S, Djuris J, Dapčević A, Medarevic D, Ibric S, Zizovic I. Soluplus ® , Eudragit ® , HPMC-AS foams and solid dispersions for enhancement of Carvedilol dissolution rate prepared by a supercritical CO2 process. Vol. 76, Polymer Testing. Elsevier Ltd; 2019. 54–64 p.

Lu J, Cuellar K, Hammer NI, Jo S, Gryczke A, Kolter K, et al. Solid-state characterization of Felodipine-Soluplus amorphous solid dispersions. Drug Dev Ind Pharm. 2016;42(3):485–96.

Zheng K, Lin Z, Capece M, Kunnath K, Chen L, Davé RN. Effect of Particle Size and Polymer Loading on Dissolution Behavior of Amorphous Griseofulvin Powder. J Pharm Sci. 2019;108(1):234–42.

Altamimi MA, Elzayat EM, Qamar W, Alshehri SM, Sherif AY, Haq N, et al. Evaluation of the bioavailability of hydrocortisone when prepared as solid dispersion. Saudi Pharm J. 2019;

Ziaee A, O’Dea S, Howard-Hildige A, Padrela L, Potter C, Iqbal J, et al. Amorphous solid dispersion of ibuprofen: A comparative study on the effect of solution based techniques. Int J Pharm. 2019;118816.

Khatri P, Shah MK, Patel N, Jain S, Vora N, Lin S. Preparation and characterization of pyrimethamine solid dispersions and an evaluation of the physical nature of pyrimethamine in solid dispersions. J Drug Deliv Sci Technol. 2018;45:110–23.

Indulkar AS, Lou X, Zhang GGZ, Taylor LS. Insights into the Dissolution Mechanism of Ritonavir-Copovidone Amorphous Solid Dispersions: Importance of Congruent Release for Enhanced Performance. Vol. 16, Molecular Pharmaceutics. 2019. 1327–1339 p.

Milne M, Liebenberg W, Aucamp M. The Stabilization of Amorphous Zopiclone in an Amorphous Solid Dispersion. AAPS PharmSciTech. 2015;16(5):1190–202.

Ma X, Williams RO. Characterization of amorphous solid dispersions: An update. J Drug Deliv Sci Technol. 2019;50(November 2018):113–24.

Li J, Fan N, Li C, Wang J, Li S, He Z. The tracking of interfacial interaction of amorphous solid dispersions formed by water-soluble polymer and nitrendipine. Appl Surf Sci. 2017;420:136–44.

Lust A, Strachan CJ, Veski P, Aaltonen J, Heinämäki J, Yliruusi J, et al. Amorphous solid dispersions of piroxicam and Soluplus®: Qualitative and quantitative analysis of piroxicam recrystallization during storage. Int J Pharm. 2015;486(1–2):306–14.

Paudel A, Geppi M, Van Den Mooter G. Structural and dynamic properties of amorphous solid dispersions: The role of solid-state nuclear magnetic resonance spectroscopy and relaxometry. J Pharm Sci. 2014;103(9):2635–62.

Yuan X, Sperger D, Munson EJ. Investigating miscibility and molecular mobility of nifedipine-PVP amorphous solid dispersions using solid-state NMR spectroscopy. Mol Pharm. 2014;11(1):329–37.

Tombari E, Ferrari C, Johari GP, Shanker RM. Calorimetric relaxation in pharmaceutical molecular glasses and its utility in understanding their stability against crystallization. J Phys Chem B. 2008;112(35):10806–14.

Lahiani-Skiba M, Hallouard F, Bounoure F, Milon N, Karrout Y, Skiba M. Enhanced Dissolution and Oral Bioavailability of Cyclosporine A: Microspheres Based on αβ-Cyclodextrins Polymers. Pharmaceutics. 2018;10(4):285.

Guo Y, Shalaev E, Smith S. Physical stability of pharmaceutical formulations: Solid-state characterization of amorphous dispersions. TrAC - Trends Anal Chem. 2013;49:137–44.

Li Y, Pang H, Guo Z, Lin L, Dong Y, Li G, et al. Interactions between drugs and polymers influencing hot melt extrusion. J Pharm Pharmacol. 2014;66(2):148–66.

Kim NA, Choi DH, Lim JY, Kim KH, Lim DG, Lee E, et al. Investigation of polymeric excipients for dutasteride solid dispersion and its physicochemical characterization. Arch Pharm Res. 2014;37(2):214–24.

Punčochová K, Ewing A V., Gajdošová M, Pekárek T, Beránek J, Kazarian SG, et al. The Combined Use of Imaging Approaches to Assess Drug Release from Multicomponent Solid Dispersions. Pharm Res. 2017;34(5):990–1001.

McFall H, Sarabu S, Shankar V, Bandari S, Murthy SN, Kolter K, et al. Formulation of aripiprazole-loaded pH-modulated solid dispersions via hot-melt extrusion technology: In vitro and in vivo studies. Int J Pharm. 2019;554(June 2018):302–11.

Dong W, Su X, Xu M, Hu M, Sun Y, Zhang P. Preparation, characterization, and in vitro/vivo evaluation of polymer-assisting formulation of atorvastatin calcium based on solid dispersion technique. Asian J Pharm Sci. 2018;13(6):546–54.

Yu M, Ocando JE, Trombetta L, Chatterjee P. Molecular Interaction Studies of Amorphous Solid Dispersions of the Antimelanoma Agent Betulinic Acid. AAPS PharmSciTech. 2015;16(2):384–97.

Tres F, Coombes SR, Phillips AR, Hughes LP, Wren SAC, Aylott JW, et al. Investigating the dissolution performance of amorphous solid dispersions using magnetic resonance imaging and proton NMR. Molecules. 2015;20(9):16404–18.

Alshahrani SM, Lu W, Park J-B, Morott JT, Alsulays BB, Majumdar S, et al. Stability-enhanced Hot-melt Extruded Amorphous Solid Dispersions via Combinations of Soluplus® and HPMCAS-HF. AAPS PharmSciTech. 2015;16(4):824–34.

Smeets A, Koekoekx R, Clasen C, Van den Mooter G. Amorphous solid dispersions of darunavir: Comparison between spray drying and electrospraying. Eur J Pharm Biopharm. 2018;130:96–107.

Albadarin AB, Potter CB, Davis MT, Iqbal J, Korde S, Pagire S, et al. Development of stability-enhanced ternary solid dispersions via combinations of HPMCP and Soluplus® processed by hot melt extrusion. Int J Pharm. 2017;532(1):603–11.

Hu XY, Lou H, Hageman MJ. Preparation of lapatinib ditosylate solid dispersions using solvent rotary evaporation and hot melt extrusion for solubility and dissolution enhancement. Int J Pharm. 2018;552(1–2):154–63.

Li N, Taylor LS. Tailoring supersaturation from amorphous solid dispersions. J Control Release. 2018;279:114–25.

Volkova T V., Perlovich GL, Terekhova I V. Enhancement of dissolution behavior of antiarthritic drug leflunomide using solid dispersion methods. Thermochim Acta. 2017;656:123–8.

Zhang Q, Zhao Y, Zhao Y, Ding Z, Fan Z, Zhang H, et al. Effect of HPMCAS on recrystallization inhibition of nimodipine solid dispersions prepared by hot-melt extrusion and dissolution enhancement of nimodipine tablets. Colloids Surfaces B Biointerfaces. 2018;172(May):118–26.

Indulkar AS, Lou X, Zhang GGZ, Taylor LS. Insights into the Dissolution Mechanism of Ritonavir-Copovidone Amorphous Solid Dispersions: Importance of Congruent Release for Enhanced Performance. Vol. 16, Molecular Pharmaceutics. 2019. 1327–1339 p.

Wlodarski K, Sawicki W, Kozyra A, Tajber L. Physical stability of solid dispersions with respect to thermodynamic solubility of tadalafil in PVP-VA. Eur J Pharm Biopharm. 2015;96(August):237–46.

Parikh T, Gupta SS, Meena AK, Vitez I, Mahajan N, Serajuddin ATM. Application of Film-Casting Technique to Investigate Drug-Polymer Miscibility in Solid Dispersion and Hot-Melt Extrudate. J Pharm Sci. 2015;104(7):2142–52.

Brandl M, Frank K, Westedt, Rosenblatt, Hölig, Rosenberg, et al. The amorphous solid dispersion of the poorly soluble ABT-102 forms nano/microparticulate structures in aqueous medium: impact on solubility. Int J Nanomedicine. 2012;5757.

Ma X, Williams RO. Characterization of amorphous solid dispersions: An update. J Drug Deliv Sci Technol. 2019;50:113–24.

Das SK, Kahali N, Bose A, Khanam J. Physicochemical characterization and in vitro dissolution performance of ibuprofen-Captisol® (sulfobutylether sodium salt of β-CD) inclusion complexes. J Mol Liq. 2018;261(2017):239–49.

Das SK, Kahali N, Bose A, Khanam J. Physicochemical characterization and in vitro dissolution performance of ibuprofen-Captisol® (sulfobutylether sodium salt of β-CD) inclusion complexes. J Mol Liq. 2018;261(2017):239–49.

Ha ES, Choo GH, Baek IH, Kim MS. Formulation, characterization, and in vivo evaluation of celecoxib-PVP solid dispersion nanoparticles using supercritical antisolvent process. Molecules. 2014;19(12):20325–39.

Thakral NK, Thakral S, Stephenson GA, Sedlock R, Suryanarayanan R. Compression-Induced Polymorphic Transformation in Tablets: Role of Shear Stress and Development of Mitigation Strategies. J Pharm Sci. 2019;108(1):476–84.

Homayouni A, Sadeghi F, Nokhodchi A, Varshosaz J, Afrasiabi Garekani H. Preparation and characterization of celecoxib solid dispersions; comparison of poloxamer-188 and PVP-K30 as carriers. Iran J Basic Med Sci. 2014;17(5):322–31.

Zhu Q, Toth SJ, Simpson GJ, Hsu HY, Taylor LS, Harris MT. Crystallization and dissolution behavior of naproxen/polyethylene glycol solid dispersions. J Phys Chem B. 2013;117(5):1494–500.

Homayun B, Lin X, Choi H-J. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics. 2019;11(3):129.

Baird JA, Taylor LS. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Deliv Rev. 2012;64(5):396–421.

Jójárt-Laczkovich O. Amorphization of a crystalline active agent with the aim of pharmaceutical technological formulation. 2012.

Wlodarski K, Sawicki W, Haber K, Knapik J, Wojnarowska Z, Paluch M, et al. Physicochemical properties of tadalafil solid dispersions - Impact of polymer on the apparent solubility and dissolution rate of tadalafil. Eur J Pharm Biopharm. 2015;94(May):106–15.

Wlodarski K, Sawicki W, Kozyra A, Tajber L. Physical stability of solid dispersions with respect to thermodynamic solubility of tadalafil in PVP-VA. Eur J Pharm Biopharm. 2015;96(August):237–46.

Rams-Baron M, Jachowicz R, Boldyreva E, Zhou D, Jamroz W, Paluch M, et al. Physical Instability: A Key Problem of Amorphous Drugs. Amorphous Drugs. 2018. 107–157 p.

Chavan RB, Rathi S, Jyothi VGSS, Shastri NR. Cellulose based polymers in development of amorphous solid dispersions. Asian J Pharm Sci. 2018;248–264.

Refbacks

  • There are currently no refbacks.