Review: Solubility And Bioavailability Enhancement Of Carvedilol Using Multicomponent Crystal Method

Nadiyah Salma Athaya, Iyan Sopyan

Abstract

Carvedilol is included in the BCS class 2 classification, drugs that have low solubility and high permeability. Drugs with low solubility pose a major challenge for oral drugs in achieving the desired systemic circulation. Moreover, carvedilol is indicated for the treatment of cardiovascular disease and hypertension which requires a rapid pharmacological response. A way to increase drug solubility is by forming multicomponent crystals, including solvates, cocrystals, and salts. Cocrystal and salt formation methods are the most frequently used methods in the pharmaceutical field. The multicomponent crystal approach is a process of combining active drug ingredients with other compounds known as coformers which then interact through molecular bonds. Multicomponent crystals provide benefits to improve the physicochemical properties of drugs without affecting their pharmacological properties. In this review, we discuss the multicomponent crystal approach as an effort to increase the solubility and bioavailability of carvedilol. The main reference data used in this review are research journals published in the last 10 years (2012-2022) using the keywords carvedilol, multicomponent crystal, solubility, bioavailability, and using Google Scholar as a database. There is also a discussion on regulation of cocrystals, methods for forming multicomponent crystals, and characterization of multicomponent crystals. The multicomponent crystal approach has promising benefits in increasing the solubility and bioavailability of carvedilol in the body.

 

Keywords: Carvedilol, multicomponent crystal, solubility, bioavailability


Full Text:

PDF HTML

References

Okamoto H, Hori M, Matsuzaki M, Tsutsui H, Yamazaki T, Nagai R, et al. Minimal dose for effective clinical outcome and predictive factors for responsiveness to carvedilol: Japanese chronic heart failure (J-CHF) study. Int J Cardiol [Internet]. 2013;164(2):238–44. Available from: http://dx.doi.org/10.1016/j.ijcard.2012.11.051

Hairunnisa H, Sopyan I, Gozali D. Ko-Kristal: Nikotinamid Sebagai Koformer. J Ilm Farm Bahari. 2019;10(2):113.

Ramadhani U., Djajadisastra J, Iskandarsyah. Pengaruh Polimer dan Peningkat Penetrasi Terhadap Karakter Penetrasi Matriks Sediaan Patch Transdermal Karvedilol. J Ilmu Kefarmasian Indones. 2017;15(2):120–7.

Jhaveri M, Nair AB, Shah J, Jacob S, Patel V, Mehta T. Improvement of oral bioavailability of carvedilol by liquisolid compact: optimization and pharmacokinetic study. Drug Deliv Transl Res. 2020;10(4):975–85.

Desiraju GR. Crystal engineering: From molecule to crystal. J Am Chem Soc. 2013;135(27):9952–67.

Cai L, Jiang L, Li C, Guan X, Zhang L, Hu X. Multicomponent crystal of metformin and barbital: Design, crystal structure analysis and characterization. Molecules. 2021;26(14).

Prado LD, Rocha HVA, Resende JALC, Ferreira GB, De Figuereido Teixeira AMR. An insight into carvedilol solid forms: Effect of supramolecular interactions on the dissolution profiles. CrystEngComm. 2014;16(15):3168–79.

Fernandes GJ, Kumar L, Sharma K, Tunge R, Rathnanand M. A Review on Solubility Enhancement of Carvedilol—a BCS Class II Drug. J Pharm Innov. 2018;13(3):197–212.

Halder S, Ahmed F, Shuma ML, Azad MAK, Kabir ER. Impact of drying on dissolution behavior of carvedilol-loaded sustained release solid dispersion: development and characterization. Heliyon [Internet]. 2020;6(9):e05026. Available from: https://doi.org/10.1016/j.heliyon.2020.e05026

Aronow W. Update of treatment of heart failure with reduction of left ventricular ejection fraction. Arch Med Sci – Atheroscler Dis. 2016;1(1):106–16.

Kemenkes RI. Farmakope Indonesia edisi VI. Departemen Kesehatan Republik Indonesia. 2020. 2371 p.

Gunnam A, Nangia AK. High-Solubility Salts of the Multiple Sclerosis Drug Teriflunomide. Cryst Growth Des. 2019;19(9):5407–17.

Grothe E, Meekes H, Vlieg E, Ter Horst JH, De Gelder R. Solvates, Salts, and Cocrystals: A Proposal for a Feasible Classification System. Cryst Growth Des. 2016;16(6):3237–43.

Karagianni A, Malamatari M, Kachrimanis K. Pharmaceutical cocrystals: New solid phase modification approaches for the formulation of APIs. Pharmaceutics. 2018;10(1).

Peltonen L. Practical guidelines for the characterization and quality control of pure drug nanoparticles and nano-cocrystals in the pharmaceutical industry. Adv Drug Deliv Rev [Internet]. 2018;131:101–15. Available from: https://doi.org/10.1016/j.addr.2018.06.009

Aitipamula S, Banerjee R, Bansal AK, Biradha K, Cheney ML, Choudhury AR, et al. Polymorphs, salts, and cocrystals: What’s in a name? Cryst Growth Des. 2012;12(5):2147–52.

Clarke HD. Crystal Engineering of Multi-Component Crystal Forms: The Opportunities and Challenges in Design. ProQuest Diss Theses. 2012;(January):153.

Setyawan D, Paramita DP. Strategi Peningkatan Kelarutan Bahan Aktif Farmasi. Surabaya: Airlangga University Press; 2019.

Healy AM, Worku ZA, Kumar D, Madi AM. Pharmaceutical solvates, hydrates and amorphous forms: A special emphasis on cocrystals. Adv Drug Deliv Rev [Internet]. 2017;117:25–46. Available from: https://doi.org/10.1016/j.addr.2017.03.002

Boothroyd S, Kerridge A, Broo A, Buttar D, Anwar J. Why Do Some Molecules Form Hydrates or Solvates? Cryst Growth Des. 2018;18(3):1903–8.

Elder DP, Holm R, De Diego HL. Use of pharmaceutical salts and cocrystals to address the issue of poor solubility. Int J Pharm [Internet]. 2013;453(1):88–100. Available from: http://dx.doi.org/10.1016/j.ijpharm.2012.11.028

Ainurofiq A, Mauludin R, Mudhakir D, Soewandhi S. Synthesis, characterization, and stability study of desloratadine multicomponent crystal formation. Res Pharm Sci. 2018;13(2):93–102.

Thakuria R, Sarma B. Drug-drug and drug-nutraceutical cocrystal/salt as alternative medicine for combination therapy: A crystal engineering approach. Crystals. 2018;8(2).

Bolla G, Nangia A. Pharmaceutical cocrystals: Walking the talk. Chem Commun. 2016;52(54):8342–60.

Food and Drug Administration. Regulatory classification of pharmaceutical co-crystals, guidance for industry. US Dep Heal Hum Serv [Internet]. 2018;(February):1–4. Available from: http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm%0Ahttps://www.fda.gov/media/81824/download

EMA. Reflection paper on the use of cocrystals and other solid state forms of active substances in medicinal products. Eur Med Agency [Internet]. 2015;44(May):1–10. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2015/07/WC500189927.pdf

Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharm Sin B [Internet]. 2021;11(8):2537–64. Available from: https://doi.org/10.1016/j.apsb.2021.03.030

Vieira EF, Soares C, Machado S, Correia M, Ramalhosa MJ, Oliva-teles MT, et al. Seaweeds from the Portuguese coast as a source of proteinaceous material: Total and free amino acid composition profile. Food Chem [Internet]. 2018;269(April):264–75. Available from: https://doi.org/10.1016/j.foodchem.2018.06.145

Buddhadev SS, Garala KC. Pharmaceutical Cocrystals—A Review. 2021;14.

Rodrigues M, Baptista B, Lopes JA, Sarraguça MC. Pharmaceutical cocrystallization techniques. Advances and challenges. Int J Pharm [Internet]. 2018;547(1–2):404–20. Available from: https://doi.org/10.1016/j.ijpharm.2018.06.024

Karimi-Jafari M, Padrela L, Walker GM, Croker DM. Creating cocrystals: A review of pharmaceutical cocrystal preparation routes and applications. Cryst Growth Des. 2018;18(10):6370–87.

Yan Y, Chen JM, Lu TB. Thermodynamics and preliminary pharmaceutical characterization of a melatonin-pimelic acid cocrystal prepared by a melt crystallization method. CrystEngComm. 2015;17(3):612–20.

FDA. CFR - Code of Federal Regulations Title 21 [Internet]. 2022. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1021&SearchTerm=benzoic acid

Rowe RC, Sheskey PJ, Quinn ME. Handbook of Pharmaceutical Excipients. Washington: The Science and Practice of Pharmacy; 2020.

Ferdiansyah R, Ardiansyah S, Rachmaniar R, Yuniar I. Review : The Effect Of Cocrystal Formation Using Carboxylic Acid Coformer With Solvent Evaporation and Solvent Drop Grinding Methods On Bioavailability Of Active Substances. J Ilm Farm Bahari. 2021;12(1):28–38.

Arun RR, Harindran J. Enhancement of Bioavailability of Carvedilol Using Solvent Deposition Techniques. Int J Pharm Sci Res. 2017;8(8):3391–401.

Hamed R, Awadallah A, Sunoqrot S, Tarawneh O, Nazzal S, AlBaraghthi T, et al. pH-Dependent Solubility and Dissolution Behavior of Carvedilol—Case Example of a Weakly Basic BCS Class II Drug. AAPS PharmSciTech. 2016;17(2):418–26.

Hiendrawan S, Widjojokusumo E, Veriansyah B, Tjandrawinata RR. Pharmaceutical Salts of Carvedilol: Polymorphism and Physicochemical Properties. AAPS PharmSciTech [Internet]. 2017;18(4):1417–25. Available from: http://dx.doi.org/10.1208/s12249-016-0616-x

Fernandes GJ, Rathnanand M, Kulkarni V. Mechanochemical Synthesis of Carvedilol Cocrystals Utilizing Hot Melt Extrusion Technology. J Pharm Innov. 2019;14(4):373–81.

Hata N, Furuishi T, Tamboli MI, Ishizaki M, Umeda D, Fukuzawa K, et al. Crystal structural analysis of dl-mandelate salt of carvedilol and its correlation with physicochemical properties. Crystals. 2020;10(1):1–14.

Zhang Q, Huang B, Xue H, Lin Z, Zhao J, Cai Z. Preparation, Characterization, and Selection of Optimal Forms of (S)-Carvedilol Salts for the Development of Extended-Release Formulation. Mol Pharm. 2021;18(6):2298–310.

Thenge R, Patel R, Kayande N, Mahajan N. Co-crystals of carvedilol: Preparation, characterization and evaluation. Int J Appl Pharm. 2020;12(1):42–9.

Eesam S, Bhandaru JS, Naliganti C, Bobbala RK, Akkinepally RR. Solubility enhancement of carvedilol usingdrug–drug cocrystallization withhydrochlorothiazide. Futur J Pharm Sci. 2020;6(77):1–13.

Csicsak D, Borbas E, Ka S, Pataki H, Taka K, Vo G. Towards more accurate solubility measurements with real time monitoring : a carvedilol case study †. 2021;11618–25.

Kumar S, Nanda A. Pharmaceutical cocrystals: An overview. Indian J Pharm Sci. 2017;79(6):858–71.

Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: An overview. Int J Pharm [Internet]. 2011;419(1–2):1–11. Available from: http://dx.doi.org/10.1016/j.ijpharm.2011.07.037

Najih YA, Widjaja B, Riwanti P, Mu’alim AI. Characterization of Meloxicam and Malonic Acid Cocrystal Prepared With Slurry Method. J Islam Pharm. 2018;3(2):51.

Stoler E, Warner JC. Non-Covalent derivatives: Cocrystals and eutectics. Molecules. 2015;20(8):14833–48.

Yamashita H, Hirakura Y, Yuda M, Teramura T, Terada K. Detection of cocrystal formation based on binary phase diagrams using thermal analysis. Pharm Res. 2013;30(1):70–80.

Eesam S, Bhandaru JS, Naliganti C, Bobbala RK. Solubility enhancement of carvedilol using drug – drug cocrystallization with hydrochlorothiazide. 2020;5.

Refbacks

  • There are currently no refbacks.