New Drug Delivery Systems in Livestock Animals
Abstract
The development of animal husbandry in Indonesia has seen positive progress through government initiatives to increase productivity and efficiency. The field of veterinary medicine plays a vital role in maintaining the health and productivity of livestock, which ultimately impacts the productivity and quality of animal products. However, areas still require improvement, particularly infrastructure, technology, and management. Pharmaceutical science, specifically veterinary pharmacy, focuses on treating animals using different drug delivery systems due to physiological differences. Significant modification in livestock drug delivery involves adjusting medication based on animal needs to improve health and reduce the risk of overmedication and antibiotic resistance. Advancements in technology and medical developments are continuously being reviewed and studied to improve veterinary medicine.
Full Text:
PDFReferences
Agus, A.; Widi, T.S.M. Current Situation and Future Prospects for Beef Cattle Production in Indonesia - A Review. Asian-Australasian J. Anim. Sci. 2018, 31, 976–983, doi:10.5713/ajas.18.0233.
Parmawati, R.; Mashudi; Budiarto, A.; Suyadi; Kurnianto, A.S. Developing Sustainable Livestock Production by Feed Adequacy Map: A Case Study in Pasuruan, Indonesia. Trop. Anim. Sci. J. 2018, 41, 67–76, doi:10.5398/tasj.2018.41.1.67.
ADB Policies to Support Investment Requirements of Indonesia’s Food and Agriculture Development During 2020-2045; 2019; ISBN 9789292617479.
Tenrisanna, V.; Kasim, K. Livestock Farming Income Analysis of Farm Households in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 788, doi:10.1088/1755-1315/788/1/012218.
Gygli, S.; Haelg, F.; Potrafke, N.; Sturm, J. The KOF Globalisation Index – Revisited Content Courtesy of Springer Nature , Terms of Use Apply . Rights Reserved . Content Courtesy of Springer Nature , Terms of Use Apply . Rights Reserved . 2019, 543–574.
Cáceres, S.B. The Roles of Veterinarians in Meeting the Challenges of Health and Welfare of Livestock and Global Food Security. Vet. Res. forum an Int. Q. J. 2012, 3, 155–157.
Ahmed, I.; Kasraian, K. Pharmaceutical Challenges in Veterinary Product Development. Adv. Drug Deliv. Rev. 2002, 54, 871–882, doi:10.1016/S0169-409X(02)00074-1.
Lavy, E.; Kirmayer, D.; Nudelman, Z.; Orenshtein-Vilensky, L.; Rowan, T.G.; Shenderovich-Gefter, J.; Friedman, M. Aspects in Controlled Drug Delivery for Topical Applications in Veterinary Medicine. Vet. Anim. Sci. 2022, 15, 100235, doi:10.1016/j.vas.2022.100235.
Vidhamaly, V.; Bellingham, K.; Newton, P.N.; Caillet, C. The Quality of Veterinary Medicines and Their Implications for One Health. BMJ Glob. Heal. 2022, 7, 1–13, doi:10.1136/bmjgh-2022-008564.
McDowell, A.; Beard, R.; Brightmore, A.; Lu, L.W.; McKay, A.; Mistry, M.; Owen, K.; Swan, E.; Young, J. Veterinary Pharmaceutics: An Opportunity for Interprofessional Education in New Zealand? Pharmaceutics 2017, 9, doi:10.3390/pharmaceutics9030025.
Martinez, M.N. Factors Influencing the Use and Interpretation of Animal Models in the Development of Parenteral Drug Delivery Systems. AAPS J. 2011, 13, 632–649, doi:10.1208/s12248-011-9303-8.
Carvalho, S.G.; Silvestre, A.L.P.; Martins dos Santos, A.; Fonseca-Santos, B.; Rodrigues, W.D.; Palmira Daflon Gremião, M.; Chorilli, M.; Villanova, J.C.O. Polymeric-Based Drug Delivery Systems for Veterinary Use: State of the Art. Int. J. Pharm. 2021, 604, doi:10.1016/j.ijpharm.2021.120756.
Nair, A.; Jacob, S. A Simple Practice Guide for Dose Conversion between Animals and Human. J. Basic Clin. Pharm. 2016, 7, 27, doi:10.4103/0976-0105.177703.
Dione, M.M.; Amia, W.C.; Ejobi, F.; Ouma, E.A.; Wieland, B. Supply Chain and Delivery of Antimicrobial Drugs in Smallholder Livestock Production Systems in Uganda. Front. Vet. Sci. 2021, 8, 1–13, doi:10.3389/fvets.2021.611076.
Balzani, A.; Hanlon, A. Factors That Influence Farmers’ Views on Farm Animal Welfare: A Semi-Systematic Review and Thematic Analysis. Animals 2020, 10, 1–25, doi:10.3390/ani10091524.
Hernandez-Patlan, D.; Tellez-Isaias, G.; Hernandez-Velasco, X.; Solis-Cruz, B. Editorial: Technological Strategies to Improve Animal Health and Production. Front. Vet. Sci. 2023, 10, doi:10.3389/fvets.2023.1206170.
Sardar, N.; Aziz, M.W.; Mukhtar, N.; Yaqub, T.; Anjum, A.A.; Javed, M.; Ashraf, M.A.; Tanvir, R.; Wolfe, A.J.; Schabacker, D.S.; et al. One Health Assessment of Bacillus Anthracis Incidence and Detection in Anthrax-Endemic Areas of Pakistan. Microorganisms 2023, 11, 1–14, doi:10.3390/microorganisms11102462.
Juwita, S.; Purwanta, P.; Muflihanah, M.; Djatmikowati, T.F. Identification of Anthrax in Endemic Areas in South Sulawesi Province. J. Ris. Vet. Indones. (Journal Indones. Vet. Res. 2018, 2, 50–55, doi:10.20956/jrvi.v2i2.4423.
Finke, E.J.; Beyer, W.; Loderstädt, U.; Frickmann, H. Review: The Risk of Contracting Anthrax from Spore-Contaminated Soil-A Military Medical Perspective. Eur. J. Microbiol. Immunol. 2020, 10, 29–63, doi:10.1556/1886.2020.00008.
Bonville, C.; Domachowske, J. Anthrax BT - Vaccines: A Clinical Overview and Practical Guide. In; Domachowske, J., Suryadevara, M., Eds.; Springer International Publishing: Cham, 2021; pp. 99–109 ISBN 978-3-030-58414-6.
Alam, M.E.; Kamal, M.M.; Rahman, M.; Kabir, A.; Islam, M.S.; Hassan, J. Review of Anthrax: A Disease of Farm Animals. J. Adv. Vet. Anim. Res. 2022, 9, 323–334, doi:10.5455/javar.2022.i599.
WHO Anthrax in Man and Animals. Anthrax humans Anim. 2008, 4th ed., 1–208.
Seid, K.; Shiferaw, A.M.; Yesuf, N.N.; Derso, T.; Sisay, M. Livestock Owners’ Anthrax Prevention Practices and Its Associated Factors in Sekota Zuria District, Northeast Ethiopia. BMC Vet. Res. 2020, 16, 1–8, doi:10.1186/s12917-020-2267-0.
Cheng, W.N.; Han, S.G. Bovine Mastitis: Risk Factors, Therapeutic Strategies, and Alternative Treatments - A Review. Asian-Australasian J. Anim. Sci. 2020, 33, 1699–1713, doi:10.5713/ajas.20.0156.
Stanek, P.; Żółkiewski, P.; Januś, E. A Review on Mastitis in Dairy Cows Research: Current Status and Future Perspectives. Agric. 2024, 14, 1–28, doi:10.3390/agriculture14081292.
Miles, A.M.; Huson, H.J. Graduate Student Literature Review: Understanding the Genetic Mechanisms Underlying Mastitis*. J. Dairy Sci. 2021, 104, 1183–1191, doi:https://doi.org/10.3168/jds.2020-18297.
Qolbaini, E.N.; Artika, I.M.; Safari, D. Detection of Subclinical Mastitis in Dairy Cows Using California Mastitis Test and Udder Pathogen. Curr. Biochem. 2014, 1, 66–70, doi:10.29244/cb.1.2.66-70.
Ramuada, M.; Tyasi, T.L.; Gumede, L.; Chitura, T. A Practical Guide to Diagnosing Bovine Mastitis: A Review. Front. Anim. Sci. 2024, 5, 1–16, doi:10.3389/fanim.2024.1504873.
Asiva Noor Rachmayani The Occurrence(s) of Septicaema Epizootica in Bali Cattle at Kupang Regency in 2005 - 2011. J. Sain Vet. 2015, 30, 6.
Sulabda, I.N.; . S. Hemorrhagic Septicemia Vaccination Induced Changed Immunoglobulin G in Bali Cattle. Int. J. Vet. Sci. Anim. Husb. 2023, 8, 84–86, doi:10.22271/veterinary.2023.v8.i1b.472.
Belutowe, Y.S. Diagnosa Penyakit Septicaemia Epizootica Pada Sapi Ternak. J. Teknol. Terpadu 2015, 1, 50–54.
Seid, A. Review on Infectious Bovine Keratoconjunctivitis and Its Economic Impacts in Cattle. J. Dairy Vet. Sci. 2019, 9, doi:10.19080/jdvs.2019.09.555774.
Maggs, D.J. Chapter 7 - Conjunctiva. In; Maggs, D.J., Miller, P.E., Ofri, R.B.T.-S.F. of V.O. (Fourth E., Eds.; W.B. Saunders: Saint Louis, 2008; pp. 135–150 ISBN 978-0-7216-0561-6.
Mahmood, A.; Shama, S.; Zhang, W. The Rising Challenge: Addressing the Pink Eye (Acute Conjunctivitis) Outbreak in Pakistan. Arch. Iran. Med. 2024, 27, 347–349.
Kaur, G.; Seitzman, G.D.; Lietman, T.M.; McLeod, S.D.; Porco, T.C.; Doan, T.; Deiner, M.S. Keeping an Eye on Pink Eye: A Global Conjunctivitis Outbreak Expert Survey. Int. Health 2022, 14, 542–544, doi:10.1093/in health/ihab049.
Rehman, A.; Abidi, S.M.A. Chapter 29 - Livestock Health: Current Status of Helminth Infections and Their Control for Sustainable Development. In; Sobti, R.C.B.T.-A. in A.E. and M., Ed.; Academic Press, 2022; pp. 365–378 ISBN 978-0-323-90583-1.
Akhtar, M.S.; Iqbal, Z.; Khan, M.N.; Lateef, M. Anthelmintic Activity of Medicinal Plants with Particular Reference to Their Use in Animals in the Indo–Pakistan Subcontinent. Small Rumin. Res. 2000, 38, 99–107, doi:https://doi.org/10.1016/S0921-4488(00)00163-2.
Charlier, J.; De Waele, V.; Ducheyne, E.; van der Voort, M.; Vande Velde, F.; Claerebout, E. Decision Making on Helminths in Cattle: Diagnostics, Economics and Human Behaviour. Ir. Vet. J. 2015, 69, 14, doi:10.1186/s13620-016-0073-6.
Arzt, J.; Juleff, N.; Zhang, Z.; Rodriguez, L.L. The Pathogenesis of Foot-and-Mouth Disease I: Viral Pathways in Cattle. Transbound. Emerg. Dis. 2011, 58, 291–304, doi:10.1111/j.1865-1682.2011.01204.x.
Corstjens, P.L.A.M.; Abrams, W.R.; Malamud, D. Saliva and Viral Infections. Periodontol. 2000 2016, 70, 93–110, doi:10.1111/prd.12112.
Nandi, S.; Kumar, M.; Manohar, M.; Chauhan, R.S. Bovine Herpes Virus Infections in Cattle. Anim. Heal. Res. Rev. 2009, 10, 85–98, doi:10.1017/S1466252309990028.
Barlow, J. Mastitis Therapy and Antimicrobial Susceptibility: A Multispecies Review with a Focus on Antibiotic Treatment of Mastitis in Dairy Cattle. J. Mammary Gland Biol. Neoplasia 2011, 16, 383–407, doi:10.1007/s10911-011-9235-z.
Ruegg, P.L. Making Antibiotic Treatment Decisions for Clinical Mastitis. Vet. Clin. North Am. Food Anim. Pract. 2018, 34, 413–425, doi:10.1016/j.cvfa.2018.06.002.
Pardon, B.; Deprez, P. Rationele Antimicrobiële Therapie Voor Sepsis Bij Runderen in Het Licht van de Nieuwe Wetgeving over Kritisch Belangrijke Antibiotica. Vlaams Diergeneeskd. Tijdschr. 2018, 87, doi:10.21825/vdt.v87i1.16094.
Deokate, U.A.; Lahane, S.B.; Sujeetkumar, A. Review on Anthelmintic Drugs. Int. J. Pharm. Res. 2014, 6, 1–7.
Vercruysse, J.; Claerebout, E. Treatment vs Non-Treatment of Helminth Infections in Cattle: Defining the Threshold. Vet. Parasitol. 2001, 98, 195–214, doi:https://doi.org/10.1016/S0304-4017(01)00431-9.
Leung, A.K.C.; Lam, J.M.; Barankin, B.; Leong, K.F.; Hon, K.L. Hand, Foot, and Mouth Disease: A Narrative Review. Recent Adv. Inflamm. Allergy drug Discov. 2022, 16, 77–95, doi:10.2174/1570180820666221024095837.
Wang, X.; Wang, Z.; Qi, Z.; Zhu, Y. Potential Therapeutic Substances for Hand-Foot-and-Mouth Disease in the Interplay of Enteroviruses and Type I Interferon. Int. J. Antimicrob. Agents 2025, 65, 107464, doi:https://doi.org/10.1016/j.ijantimicag.2025.107464.
Unde, J.S.; Ahirwar, K.; Kumar, A.; Ali Alshehri, S.; Wahab, S.; Kesharwani, P.; Shukla, R. Manoeuvring the Innovative Drug Delivery Systems for Veterinary Therapeutics: Present Day Demand. Eur. Polym. J. 2024, 215, 113244,
doi:https://doi.org/10.1016/j.eurpolymj.2024.113244.
Albuquerque, J.; Neves, A.R.; Van Dorpe, I.; Fonseca, A.J.M.; Cabrita, A.R.J.; Reis, S. Production of Rumen- and Gastrointestinal-Resistant Nanoparticles to Deliver Lysine to Dairy Cows. Sci. Rep. 2023, 13, 1–14, doi:10.1038/s41598-023-43865-6.
Almassri, N.; Trujillo, F.J.; Terefe, and N.S. Microencapsulation Technology for Delivery of Enzymes in Ruminant Feed. Front. Vet. Sci. 2024, 10.3389, 1–16, doi:10.3389/fvets.2024.1352375.
Schwestka, J.; Stoger, E. Microparticles and Nanoparticles from Plants-The Benefits of Bioencapsulation. Vaccines 2021, 9, doi:10.3390/vaccines9040369.
Rodríguez-González, S.; González-Dávalos, L.; Robles-Rodríguez, C.; Lozano-Flores, C.; Varela-Echavarría, A.; Shimada, A.; Mora-Izaguirre, O. Isolation of Bacterial Consortia with Probiotic Potential from the Rumen of Tropical Calves. J. Anim. Physiol. Anim. Nutr. (Berl). 2023, 107, 62–76, doi:10.1111/jpn.13699.
Arowolo, M.A.; He, J. Use of Probiotics and Botanical Extracts to Improve Ruminant Production in the Tropics: A Review. Anim. Nutr. 2018, 4, 241–249, doi:https://doi.org/10.1016/j.aninu.2018.04.010.
Wu, R.; Ji, P.; Hua, Y.; Li, H.; Zhang, W.; Wei, Y. Research Progress in Isolation and Identification of Rumen Probiotics. Front. Cell. Infect. Microbiol. 2024, 14, 1411482, doi:10.3389/fcimb.2024.1411482.
Estes, K.A.; Yoder, P.S.; Stoffel, C.M.; Hanigan, M.D. An Evaluation of the Validity of an in Vitro and an in Situ/in Vitro Procedure for Assessing Protein Digestibility of Blood Meal, Feather Meal and a Rumen-Protected Lysine Prototype. Transl. Anim. Sci. 2022, 6, txac039, doi:10.1093/tas/txac039.
Renu, S.; Han, Y.; Dhakal, S.; Lakshmanappa, Y.S.; Ghimire, S.; Feliciano-Ruiz, N.; Senapati, S.; Narasimhan, B.; Selvaraj, R.; Renukaradhya, G.J. Chitosan-Adjuvanted Salmonella Subunit Nanoparticle Vaccine for Poultry Delivered through Drinking Water and Feed. Carbohydr. Polym. 2020, 243, 116434,
doi:https://doi.org/10.1016/j.carbpol.2020.116434.
MacLeod, D.L.; Prescott, J.F. The Use of Liposomally-Entrapped Gentamicin in the Treatment of Bovine Staphylococcus Aureus Mastitis. Can. J. Vet. Res. = Rev. Can. Rech. Vet. 1988, 52, 445–450.
Dorati, R.; Conti, B.; Colzani, B.; Dondi, D.; Lazzaroni, S.; Modena, T.; Genta, I. Ivermectin Controlled Release Implants Based on Poly-D,l-Lactide and Poly-ε-Caprolactone. J. Drug Deliv. Sci. Technol. 2018, 46, 101–110, doi:https://doi.org/10.1016/j.jddst.2018.04.014.
Tong, J.; Liu, Z.; Zhou, K.; Wang, K.; Guo, S.; Zhang, H. Thermosensitive Bovine Lactoferricin-Loaded Chitosan Hydrogels for Sustained Antibacterial Release: An Alternative to Antibiotics for Treating Bovine Mastitis. Int. J. Biol. Macromol. 2025, 303, 140673, doi:https://doi.org/10.1016/j.ijbiomac.2025.140673.
Butreddy, A.; Gaddam, R.P.; Kommineni, N.; Dudhipala, N.; Voshavar, C. PLGA/PLA-Based Long-Acting Injectable Depot Microspheres in Clinical Use: Production and Characterization Overview for Protein/Peptide Delivery. Int. J. Mol. Sci. 2021, 22, doi:10.3390/ijms22168884.
Uddin, A.H.M.M.; Song, Y.; Garg, S.; Petrovski, K.R.; Kirkwood, R.N. Control of Ovarian Function Using Non-Injection Technologies for GnRH Administration. J. Drug Deliv. Sci. Technol. 2023, 84, 104502, doi:https://doi.org/10.1016/j.jddst.2023.104502.
Herdiana, Y. Polymeric Rumen-Stable Delivery Systems for Delivering Nutricines. 2025, 15, 565–593, doi:10.5455/OVJ.2025.v15.i2.7.
Mohamed, D.; ELbalkiny, H.T. Application of Solidified Floating Organic Droplet Dispersive Liquid-Liquid Microextraction for Determination of Veterinary Antibiotic Residues in Milk Samples with Greenness Assessment. Microchem. J. 2023, 193, 109153, doi:https://doi.org/10.1016/j.microc.2023.109153.
Ozcan, U.; Tutuncu, M. The Effect of Florfenicol Given by Nebulization in the Treatment of Naturally Infected Calves With Bovine Respiratory Disease Complex: Randomized Clinical Study. Vet. Med. Sci. 2025, 11, 1–10, doi:10.1002/vms3.70238.
Jia, Y.; Joly, H.; Omri, A. Liposomes as a Carrier for Gentamicin Delivery: Development and Evaluation of the Physicochemical Properties. Int. J. Pharm. 2008, 359, 254–263, doi:https://doi.org/10.1016/j.ijpharm.2008.03.035.
Dorati, R.; Genta, I.; Colzani, B.; Modena, T.; Bruni, G.; Tripodo, G.; Conti, B. Stability Evaluation of Ivermectin-Loaded Biodegradable Microspheres. AAPS PharmSciTech 2015, 16, 1129–1139, doi:10.1208/s12249-015-0305-1.
Hassanein, E.M.; Szelényi, Z.; Szenci, O. Gonadotropin-Releasing Hormone (GnRH) and Its Agonists in Bovine Reproduction I: Structure, Biosynthesis, Physiological Effects, and Its Role in Estrous Synchronization. Anim. an open access J. from MDPI 2024, 14, doi:10.3390/ani14101473.
Jahanbekam, S.; Asare-Addo, K.; Alipour, S.; Nokhodchi, A. Smart Hydrogels and the Promise of Multi-Responsive in-Situ Systems. J. Drug Deliv. Sci. Technol. 2025, 107, 106758, doi:https://doi.org/10.1016/j.jddst.2025.106758.
Refbacks
- There are currently no refbacks.