Callyspongia sp. : Metabolit Sekunder, Aktivitas farmakologi, dan Mekanismenya
Abstrak
Kata Kunci
Teks Lengkap:
PDFReferensi
Oki Pratama. Konservasi Perairan Sebagai Upaya menjaga Potensi Kelautan dan Perikanan Indonesia. DIREKTORAT JENDERAL PENGELOLAAN RUANG LAUT. 2020.
Van Soest Rob W. M., Nicole Boury-Esnault, Jean Vacelet, Martin Dohrmann, Dirk Erpenbeck, Nicole J. De Voogd. Global Diversity of Sponges (Porifera). PLoS One. 2012 Apr;7(4).
Busutil L, Garc a-Hernández M a. R, Díaz MC, Pomponi SA. Mesophotic sponges of the genus Callyspongia (Demospongiae, Haplosclerida) from Cuba, with the description of two new species. Zootaxa [Internet]. 2018 Aug 31 [cited 2022 May 11];4466(1):78–94. Available from: https://pubmed.ncbi.nlm.nih.gov/30313441/
De Voogd N. Indonesian sponges : biodiversity and mariculture potential. UvA Dare. 2005;39–45.
Marzuki I. Eksplorasi Spons Indonesia Seputar Kepulauan Spermonde. Makassar: Nas Media Pustaka; 2018.
Warbung YY. Daya Hambat Ekstrak Spons Laut Callyspongia sp terhadap Pertubuhan Bakteri Staphylococcus aureus. J Ilm Kedokt Gigi. 2013;1(2).
El-Demerdash A, Atanas G Atanasov, Olaf K Horbanczuk, Mohamed A Tammam, Mamdouh Abdel-Mogib, John N A Hooper. Chemical Diversity and Biological Activities of Marine Sponges of the Genus Suberea: A Systematic Review. Mar Drugs. 2019 Feb;17(2).
Perdikaris S, Thomais Vlachogianni, Athanasios - Valavanidis. Bioactive Natural Substances from Marine Sponges: New Developments and Prospects for Future Pharmaceuticals. Nat Prod Chem Res . 2013 Oct;1(3).
de Sousa LHN, de Araújo RD, Sousa-Fontoura D, Menezes FG, Araújo RM. Metabolities from Marine Sponges of the Genus Callyspongia: Occurrence, Biological Activity, and NMR Data. Mar Drugs [Internet]. 2021 Nov 26 [cited 2022 May 11];19(12). Available from: http://www.ncbi.nlm.nih.gov/pubmed/34940662
Nakao Y, Uehara T, Matunaga S, Fusetani N, van Soest RWM. Callyspongynic Acid, a Polyacetylenic Acid Which Inhibits α-Glucosidase, from the Marine Sponge Callyspongia t runcata. J Nat Prod. 2002 Jun 1;65(6):922–4.
Resuello DL, Lirio SB, Porto AE, Macabeo APG, Huang H-Y, Corpuz MJ-AT, et al. β-secretase 1 inhibitory activity and AMP-activated protein kinase activation of Callyspongia samarensis extracts. Nat Prod Res. 2020 Feb 16;34(4):525–9.
Aurang Zeb M, Ullah Khan S, Ur Rahman T, Sajid M, Seloni S. Isolation and biological activity of β-sitosterol and stigmasterol from the roots of Indigofera heterantha. Pharm Pharmacol Int J [Internet]. 2017 Nov 16 [cited 2022 Jun 12];Volume 5(Issue 5). Available from: https://medcraveonline.com/PPIJ/PPIJ-05-00139.php
Kapojos MM, Abdjul DB, Yamazaki H, Ohshiro T, Rotinsulu H, Wewengkang DS, et al. Callyspongiamides A and B, sterol O-acyltransferase inhibitors, from the Indonesian marine sponge Callyspongia sp. Bioorg Med Chem Lett [Internet]. 2018 Jun 1 [cited 2022 May 11];28(10):1911–4. Available from: https://pubmed.ncbi.nlm.nih.gov/29631961/
Chakraborty K, Francis P. Callypyrones from marine Callyspongiidae sponge Callyspongia diffusa: antihypertensive bis- γ-pyrone polypropionates attenuate angiotensin-converting enzyme. Nat Prod Res [Internet]. 2021 [cited 2022 May 11];35(24):5801–12. Available from: https://pubmed.ncbi.nlm.nih.gov/33131327/
Ibrahim HAH, El-Naggar HA, El-Damhougy KA, Bashar MAE, Abou Senna FM. Callyspongia crassa and C. siphonella (Porifera, Callyspongiidae) as a potential source for medical bioactive substances, Aqaba Gulf, Red Sea, Egypt. J Basic Appl Zool. 2017 Dec 15;78(1):7.
ADRYAN FRISTIOHADY, WAHYUNI WAHYUNI, FADHLIYAH MALIK, LA ODE MUHAMMAD JULIAN PURNAMA, BARU SADARUN, SAHIDIN I. ANTI-INFLAMMATORY ACTIVITY OF MARINE SPONGE CALLYSPONGIA SP. AND ITS ACUTE TOXICITY. Asian J Pharm Clin Res. 2019 Oct 23;97–100.
Chen JH, Lan XP, Liu Y, Jia AQ. The effects of diketopiperazines from Callyspongia sp. on release of cytokines and chemokines in cultured J774A.1 macrophages. Bioorg Med Chem Lett [Internet]. 2012 May 1 [cited 2022 May 11];22(9):3177–80. Available from: https://pubmed.ncbi.nlm.nih.gov/22469701/
Gupta MB, Nath R, Srivastava N, Shanker K, Kishor K, Bhargava KP. Anti-inflammatory and antipyretic activities of beta-sitosterol. Planta Med [Internet]. 1980 [cited 2022 Jun 12];39(2):157–63. Available from: http://www.thieme-connect.de/DOI/DOI?10.1055/s-2008-1074919
Youssef DTA, Ibrahim AK, Khalifa SI, Mesbah MK, Mayer AMS, van Soest RWM. New Antiinflammatory Sterols from the Red Sea Sponges Scalarispongia aqabaensis and Callyspongia siphonella. Nat Prod Commun. 2010 Jan 1;5(1):1934578X1000500.
Abdelmohsen UR, Cheng C, Reimer A, Kozjak-Pavlovic V, Ibrahim AK, Rudel T, et al. Antichlamydial sterol from the Red Sea sponge Callyspongia aff. implexa. Planta Med. 2015 Mar;81(5):382–7.
Ibrahim SRM, Min CC, Teuscher F, Ebel R, Kakoschke C, Lin W, et al. Callyaerins A-F and H, new cytotoxic cyclic peptides from the Indonesian marine sponge Callyspongia aerizusa. Bioorg Med Chem. 2010 Jul 15;18(14):4947–56.
Kiprono PC, Kaberia F, Keriko JM, Karanja JN. The in vitro anti-fungal and anti-bacterial activities of beta-sitosterol from Senecio lyratus (Asteraceae). Z Naturforsch C [Internet]. 2000 [cited 2022 Jun 12];55(5–6):485–8. Available from: https://pubmed.ncbi.nlm.nih.gov/10928565/
López S, Fernández-Trillo F, Midón P, Castedo L, Saá C. First stereoselective syntheses of (-)-siphonodiol and (-)-tetrahydrosiphonodiol, bioactive polyacetylenes from marine sponges. J Org Chem [Internet]. 2005 Aug 5 [cited 2022 Jun 12];70(16):6346–52. Available from: https://pubmed.ncbi.nlm.nih.gov/16050696/
Shimizu K, Geng X, Hashiguchi M, Suhara H, Fukunaga S, Yasutake S, et al. Indole-3-carbaldehyde: A tyrosinase inhibitor from fungus YL185. J Wood Sci. 2003;49(4):349–54.
Pham C-D, Hartmann R, Böhler P, Stork B, Wesselborg S, Lin W, et al. Callyspongiolide, a cytotoxic macrolide from the marine sponge Callyspongia sp. Org Lett. 2014 Jan 3;16(1):266–9.
Shaala LA, Youssef DTA, Ibrahim SRM, Mohamed GA. Callyptide A, a new cytotoxic peptide from the Red Sea marine sponge Callyspongia species. Nat Prod Res. 2016 Dec;30(24):2783–90.
Kim CK, Woo JK, Lee YJ, Lee HS, Sim CJ, Oh DC, et al. Callyazepin and (3R)-Methylazacyclodecane, Nitrogenous Macrocycles from a Callyspongia sp. Sponge. J Nat Prod [Internet]. 2016 Apr 22 [cited 2022 May 11];79(4):1179–83. Available from: https://pubmed.ncbi.nlm.nih.gov/27015002/
Plisson F, Prasad P, Xiao X, Piggott AM, Huang X, Khalil Z, et al. Callyspongisines A-D: bromopyrrole alkaloids from an Australian marine sponge, Callyspongia sp. Org Biomol Chem. 2014 Mar 14;12(10):1579–84.
Abdillah S, Nurhayati APD, Nurhatika S, Setiawan E, Heffen WL. Cytotoxic and antioxidant activities of marine sponge diversity at Pecaron Bay Pasir Putih Situbondo East Java, Indonesia. J Pharm Res. 2013 Jul;6(7):685–9.
Murakami N, Wang W, Aoki M, Tsutsui Y, Higuchi K, Aoki S, et al. Absolute stereostructure of callystatin A, a potent cytotoxic polyketide from the marine sponge, Callyspongia truncata. Tetrahedron Lett. 1997 Aug;38(31):5533–6.
Shirouzu T, Watari K, Ono M, Koizumi K, Saiki I, Tanaka C, et al. Structure, synthesis, and biological activity of a C-20 bisacetylenic alcohol from a marine sponge Callyspongia sp. J Nat Prod. 2013 Jul 26;76(7):1337–42.
Umeyama A, Matsuoka N, Mine R, Nakata A, Arimoto E, Matsui M, et al. Polyacetylene diols with antiproliferative and driving Th1 polarization effects from the marine sponge Callyspongia sp. J Nat Med [Internet]. 2010 Jan [cited 2022 May 11];64(1):93–7. Available from: https://pubmed.ncbi.nlm.nih.gov/19802655/
Youssef DTA, Van Soest RWM, Fusetani N. Callyspongenols A-C, new cytotoxic C22-polyacetylenic alcohols from a red sea sponge, Callyspongia species. J Nat Prod [Internet]. 2003 May 1 [cited 2022 May 11];66(5):679–81. Available from: https://pubmed.ncbi.nlm.nih.gov/12762806/
Youssef DTA, van Soest RWM, Fusetani N. Callyspongamide A, a New Cytotoxic Polyacetylenic Amide from the Red Sea Sponge Callyspongia f istularis. J Nat Prod. 2003 Jun 1;66(6):861–2.
Youssef DTA, Yoshida WY, Kelly M, Scheuer PJ. Polyacetylenes from a red sea sponge Callyspongia species. J Nat Prod [Internet]. 2000 [cited 2022 May 11];63(10):1406–10. Available from: https://pubmed.ncbi.nlm.nih.gov/11076563/
Davies-Coleman MT, Faulkner DJ, Dubowchik GM, Roth GP, Polson C, Fairchild C. A new EGF-active polymeric pyridinium alkaloid from the sponge Callyspongia fibrosa. J Org Chem. 1993 Oct 1;58(22):5925–30.
Fukami A, Ikeda Y, Kondo S, Naganawa H, Takeuchi T, Furuya S, et al. Akaterpin, a novel bioactive triterpene from the marine sponge Callyspongia sp. Tetrahedron Lett. 1997 Feb;38(7):1201–2.
Hadisaputri YE, Andika R, Sopyan I, Zuhrotun A, Maharani R, Rachmat R, et al. Caspase Cascade Activation During Apoptotic Cell Death of Human Lung Carcinoma Cells A549 Induced by Marine Sponge Callyspongia aerizusa. Drug Des Devel Ther. 2021 Mar;Volume 15:1357–68.
Afifi R, Khabour OF. Antibacterial activity of the Saudi Red Sea sponges against Gram-positive pathogens. J King Saud Univ - Sci. 2019 Oct;31(4):753–7.
Gray CA, De Lira SP, Silva M, Pimenta EF, Thiemann OH, Oliva G, et al. Sulfated meroterpenoids from the Brazilian sponge Callyspongia sp. are inhibitors of the antileishmaniasis target adenosine phosphoribosyl transferase. J Org Chem [Internet]. 2006 Nov 10 [cited 2022 May 11];71(23):8685–90. Available from: https://pubmed.ncbi.nlm.nih.gov/17080994/
Soleman P, Yudistira A, Jayanti M, Program ), Farmasi S, Unsrat F. ANTIOXIDANT ACTIVITY TEST OF ETHANOL OF SPONGE Callyspongia aerizusa FROM MANTEHAGE ISLANDS NORTH MINAHASA REGENCY UJI AKTIVITAS ANTIOKSIDAN EKSTRAK ETANOL SPONS Callyspongia aerizusa DARI PULAU MANTEHAGE KABUPATEN MINAHASA UTARA. PHARMACON. 2021;10(3):962–7.
Yang B, Tao H, Zhou X, Lin X-P, Liu Y. Two new alkaloids from marine sponge Callyspongia sp. Nat Prod Res. 2013 Mar;27(4–5):433–7.
Daletos G, Kalscheuer R, Koliwer-Brandl H, Hartmann R, de Voogd NJ, Wray V, et al. Callyaerins from the Marine Sponge Callyspongia aerizusa: Cyclic Peptides with Antitubercular Activity. J Nat Prod. 2015 Aug 28;78(8):1910–25.
Buchanan MS, Carroll AR, Addepalli R, Avery VM, Hooper JNA, Quinn RJ. Niphatoxin C, a cytotoxic tripyridine alkaloid from Callyspongia sp. J Nat Prod [Internet]. 2007 Dec [cited 2022 May 11];70(12):2040–1. Available from: https://pubmed.ncbi.nlm.nih.gov/18027906/
Takei M, Umeyama A, Shoji N, Hashimoto T. Differential regulation of DC function by Siphonodiol. Immunopharmacol Immunotoxicol [Internet]. 2008 Jun [cited 2022 May 11];30(2):425–35. Available from: https://pubmed.ncbi.nlm.nih.gov/18569094/
Fraile L, Crisci E, Córdoba L, Navarro MA, Osada J, Montoya M. Immunomodulatory properties of beta-sitosterol in pig immune responses. Int Immunopharmacol. 2012 Jul;13(3):316–21.
Adryan Fristiohady, Mesi Leorita, Muh. Hajrul Malaka, Rini Hamsidi, Nur Azizah, Rensi Fransiskus, et al. Immunomodulatory Activity of Callyspongia sp. Extract Towards Interferon-gamma (IFN-γ) and Tumor Necrosis Factor-Alpha (TNF-α) Levels in Staphylococcus aureus –Induced Wistar Male Rats. Biointerface Res Appl Chem. 2020 Sep 11;11(2):9311–7.
Arya A, Nahar L, Khan HU, Sarker SD. Anti-obesity natural products. In: Annual Reports in Medicinal Chemistry. Academic Press Inc.; 2020. p. 411–33.
Meila O, Noraini N. Uji Aktivitas Antidiabetes dari Ekstrak Metanol Buah Kiwi (Actinidia deliciosa) melalui Penghambatan Aktivitas α-Glukosidase. J Farm Galen (Galenika J Pharmacy). 2017;3(2):132–7.
Aoki K, Kamiyama H, Masuda K, Kamiko K, Noguchi Y, Tajima K, et al. Effects of miglitol, vildagliptin, or their combination on serum insulin and peptide YY levels and plasma glucose, cholecystokinin, ghrelin, and obestatin levels. Endocr J. 2014;61(3):249–56.
Kaku H, Tajiri Y, Yamada K. Anorexigenic effects of miglitol in concert with the alterations of gut hormone secretion and gastric emptying in healthy subjects. Horm Metab Res. 2012;44(4):312–8.
Domecq JP, Prutsky G, Leppin A, Sonbol MB, Altayar O, Undavalli C, et al. Drugs commonly associated with weight change: A systematic review and meta-analysis. J Clin Endocrinol Metab. 2015;100(2):363–70.
Joshi SR, Standl E, Tong N, Shah P, Kalra S, Rathod R. Therapeutic potential of a -glucosidase inhibitors in type 2 diabetes mellitus : an evidence-based review. 2015;(Cv):1959–81.
Guan C, Niu Y, Chen S, Kang Y, Wu J, Nishi K, et al. 1 by a competitive inhibitor. Nat Commun [Internet]. (2020):1–11. Available from: http://dx.doi.org/10.1038/s41467-020-16288-4
Rogers MA, Liu J, Song B, Li B, Chang CCY, Chang T. Journal of Steroid Biochemistry & Molecular Biology Acyl-CoA : cholesterol acyltransferases ( ACATs / SOATs ): Enzymes with multiple sterols as substrates and as activators. J Steroid Biochem Mol Biol [Internet]. 2014;6–11. Available from: http://dx.doi.org/10.1016/j.jsbmb.2014.09.008
Babu S, Krishnan M, Rajagopal P, Periyasamy V, Veeraraghavan V, Govindan R, et al. Beta-sitosterol attenuates insulin resistance in adipose tissue via IRS-1/Akt mediated insulin signaling in high fat diet and sucrose induced type-2 diabetic rats. Eur J Pharmacol [Internet]. 2020;873:173004. Available from: https://doi.org/10.1016/j.ejphar.2020.173004
Krishnan M, Babu S, Rajagopal P, Nazar SP, Chinnaiyan M, Jayaraman S. Effect of β-sitosterol on insulin receptor, glucose transporter 4 protein expression and glucose oxidation in the gastrocnemius muscle of high fat diet induced type-2 diabetic experimental rats. Indian J Pharm Educ Res. 2021;55(2):S479–91.
Ramalingam S, Packirisamy M, Karuppiah M, Vasu G, Gopalakrishnan R, Gothandam K, et al. Effect of β-sitosterol on glucose homeostasis by sensitization of insulin resistance via enhanced protein expression of PPRγ and glucose transporter 4 in high fat diet and streptozotocin-induced diabetic rats. Cytotechnology [Internet]. 2020;72(3):357–66. Available from: https://doi.org/10.1007/s10616-020-00382-y
Musi N, Goodyear L. Targeting the AMP-Activated Protein Kinase for the Treatment of Type 2 Diabetes. Curr Drug Target - Immune, Endocr Metab Disord. 2002 Jul 1;2(2):119–27.
Widiasari S. Mekanisme Inhibisi Angiotensin Converting Enzym Oleh Flavonoid Pada Hipertensi Inhibition Angiotensin Converting Enzym Mechanism By Flavonoid in Hypertension. 2018;1(2):30–44.
Garmana AN, Sukandar EY, Fidrianny I. Efek Vasodilatasi dan Inhibisi Angiotensin Converting Enzyme dari Ekstrak Etanol dan Fraksi Daun Binahong (Anredera Cordifolia (Ten). V. Steenis). Acta Pharm Indones [Internet]. 2017;42(2):51–9. Available from: https://journals.itb.ac.id/index.php/acta/article/view/5648
Vergani A, Tezza S, D’Addio F, Fotino C, Liu K, Niewczas M, et al. Long-term heart transplant survival by targeting the ionotropic purinergic receptor P2X7. Circulation. 2013;127(4):463–75.
Fowler BJ, Gelfand BD, Kim Y, Kerur N, Tarallo V, Hirano Y, et al. Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity. Science (80- ). 2014;346(6212):1000–3.
Ti H, Zhuang Z, Yu Q, Wang S. Progress of plant medicine derived extracts and alkaloids on modulating viral infections and inflammation. Drug Des Devel Ther. 2021;15:1385–408.
Mohammed MS, Osman WJA, Garelnabi EAE, Osman Z, Osman B, Khalid HS, et al. Secondary metabolites as anti-inflammatory agents. J Phytopharm. 2014;3(4):275–85.
LV Q, WANG K, QIAO SM, DAI Y, WEI ZF. Norisoboldine, a natural aryl hydrocarbon receptor agonist, alleviates TNBS-induced colitis in mice, by inhibiting the activation of NLRP3 inflammasome. Chin J Nat Med. 2018;16(3):161–74.
Chen Q, Duan X, Fan H, Xu M, Tang Q, Zhang L, et al. Oxymatrine protects against DSS-induced colitis via inhibiting the PI3K/AKT signaling pathway. Int Immunopharmacol [Internet]. 2017;53(August):149–57. Available from: http://dx.doi.org/10.1016/j.intimp.2017.10.025
Chen YY, Li RY, Shi MJ, Zhao YX, Yan Y, Xu XX, et al. Demethyleneberberine alleviates inflammatory bowel disease in mice through regulating NF-κB signaling and T-helper cell homeostasis. Inflamm Res. 2017;66(2):187–96.
Fu X, Sun F, Wang F, Zhang J, Zheng B, Zhong J, et al. Aloperine Protects Mice against DSS-Induced Colitis by PP2A-Mediated PI3K/Akt/mTOR Signaling Suppression. Mediators Inflamm. 2017;2017.
Zhang XJ, Yuan ZW, Qu C, Yu XT, Huang T, Chen PV, et al. Palmatine ameliorated murine colitis by suppressing tryptophan metabolism and regulating gut microbiota. Pharmacol Res [Internet]. 2018;137:34–46. Available from: https://doi.org/10.1016/j.phrs.2018.09.010
Isaac Dhinakaran D, Manohari V, Atchya B, Tamilselvi K, Lipton AP. Antifungal and cytotoxic activities of some marine sponges collected from the South East Coast of India. J Appl Pharm Sci. 2012;2(1):52–5.
Hyung June K, Dong Won K. Two new species of the genus Callyspongia (Haplosclerida:Callyspongiidae) from Korea. J Asia-Pacific Biodivers. 2017 Dec;10(4):448–52.
Ghanadian M. Cytotoxic effect of Cousinia verbascifolia Bunge against OVCAR-3 and HT-29 cancer cells [Internet]. Vol. 4, Journal of HerbMed Pharmacology Journal homepage: J HerbMed Pharmacol. 2015. Available from: http://www.herbmedpharmacol.com
Hadisaputri YE, Miyazaki T, Suzuki S, Yokobori T, Kobayashi T, Tanaka N, et al. TNFAIP8 Overexpression: Clinical Relevance to Esophageal Squamous Cell Carcinoma. Ann Surg Oncol. 2012 Jul 4;19(S3):589–96.
Boitz JM, Ullman B. Adenine and adenosine salvage in Leishmania donovani. Mol Biochem Parasitol [Internet]. 2013;190(2):51–5. Available from: http://dx.doi.org/10.1016/j.molbiopara.2013.06.005
Andrioli WJ, Santos MS, Silva VB, Oliveira RB, Chagas-Paula DA, Jorge JA, et al. δ -Lactam derivative from thermophilic soil fungus exhibits in vitro anti-allergic activity. Nat Prod Res. 2012 Dec;26(23):2168–75.
Huang L, Li T, Zhou H, Wu J, Liu L. Sinomenine potentiates degranulation of RBL-2H3 basophils via up-regulation of phospholipase A2 phosphorylation by Annexin A1 cleavage and ERK phosphorylation without influencing on calcium mobilization. Int Immunopharmacol [Internet]. 2015;1–7. Available from: http://dx.doi.org/10.1016/j.intimp.2015.04.029
Fukuishi N, Murakami S, Ohno A, Matsui N, Fukutsuji K, Itoh K, et al. Does β -Hexosaminidase Function Only as a Degranulation Indicator in Mast Cells? The Primary Role of β -Hexosaminidase in Mast Cell Granules. 2014;
Dinneswara Reddy G, Park S-J, Cho HM, Kim T-J, Lee ME. Antiallergic Activity Profile in Vitro RBL-2H3 and in Vivo Passive Cutaneous Anaphylaxis Mouse Model of New Sila-Substituted 1,3,4-Oxadiazoles. J Med Chem. 2012 Jul 26;55(14):6438–44.
Yang Y, Lundqvist A. Immunomodulatory effects of il-2 and il-15; implications for cancer immunotherapy. Cancers (Basel). 2020;12(12):1–20.
Leonard WJ, Lin JX, O’Shea JJ. The γ c Family of Cytokines: Basic Biology to Therapeutic Ramifications. Immunity [Internet]. 2019;50(4):832–50. Available from: https://doi.org/10.1016/j.immuni.2019.03.028
Kak G, Raza M, Tiwari BK. Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomol Concepts. 2018;9(1):64–79.
Peppard J V., Loo P, Sills MA, Munster D, Pomponi SA, Wright AE. Characterization of an interleukin 6 cytokine family antagonist protein from a marine sponge, Callyspongia sp. J Biol Chem [Internet]. 1996 Mar 29 [cited 2022 May 11];271(13):7281–4. Available from: https://pubmed.ncbi.nlm.nih.gov/8631742/
Reeh H, Rudolph N, Billing U, Christen H, Streif S, Bullinger E, et al. Response to IL-6 trans- A nd IL-6 classic signalling is determined by the ratio of the IL-6 receptor α to gp130 expression: Fusing experimental insights and dynamic modelling. Cell Commun Signal. 2019;17(1):1–21.
Ben Halima S, Mishra S, Raja KMP, Willem M, Baici A, Simons K, et al. Specific Inhibition of β-Secretase Processing of the Alzheimer Disease Amyloid Precursor Protein. Cell Rep. 2016;14(9):2127–41.
Lauretti E, Dincer O, Praticò D. Jo ur na l P re of. BBA - Mol Cell Res [Internet]. 2020;118664. Available from: https://doi.org/10.1016/j.bbamcr.2020.118664
Huang C, Fu XH, Zhou D, Li JM. The Role of Wnt/β-Catenin Signaling Pathway in Disrupted Hippocampal Neurogenesis of Temporal Lobe Epilepsy: A Potential Therapeutic Target? Neurochem Res. 2015;40(7):1319–32.
Valvezan AJ, Klein PS. GSK-3 and Wnt signaling in neurogenesis and bipolar disorder. 2012;5(January):1–13.
DOI: https://doi.org/10.24198/ijbp.v2i2.39891
DOI (PDF): https://doi.org/10.24198/ijbp.v2i2.39891.g18401
Refbacks
- Saat ini tidak ada refbacks.
##submission.license.cc.by-nc4.footer##
IJBP by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License