Mutasi Gen blaCTX-M sebagai Faktor Risiko Penyebab Resistensi Antibiotik

Devinna Kang, Rano K. Sinuraya, Tina Rostinawati, Rizky Abdulah

Abstract


Saat ini, lebih dari setengah antibiotik yang digunakan di dunia merupakan kelompok β-laktam namun efektivitas klinis antibiotik tersebut kini terbatas karena resistensi antibiotik terhadap mikroorganisme penyebab penyakit infeksius. Beberapa mekanisme resistensi terhadap Enterobacteriaceae terutama disebabkan hidrolisis antibiotik oleh enzim spesifik, yang disebut dengan β-laktamase. Enzim β-laktamase menunjukkan kelompok besar enzim yang berbeda secara genetik dan fungsional yaitu extended-spectrum β-lactamase (ESBL) yang diketahui menimbulkan ancaman resistensi yang serius. Lokalisasi plasmid dari gen yang disandi terhadap distribusi enzim pada patogen meningkat setiap tahunnya. ESBL yang memiliki penyebaran yang luas dan relevan secara klinis adalah ESBL kelas A yaitu jenis Temoniera (TEM), Sulphydryl variable (SHV) dan Cefotaxime (CTX-M). Tujuan penulisan review ini adalah untuk mengkaji varian gen blaCTX-M yang banyak menyebabkan peningkatan resistensi antibiotik. Metode yang digunakan pada review ini yaitu penelusuran data berbasis Pubmed, Scopus dan Google Scholar tanpa pembatasan indeks faktor dengan kata kunci “blaCTX-M”, “Extended-spectrum β-lactamase”, dan “antibiotic resistance”. Simpulan dari review ini yaitu ESBL jenis CTX-M telah menggantikan jenis TEM dan SHV secara dominan pada dekade terakhir. ESBL yang dihasilkan oleh Klebsiella pneumoniae diketahui muncul sebagai salah satu patogen nosokomial utama. Infeksi nosokomial yang disebabkan oleh CTX-M-15 pada Klebsiella pneumoniae mengalami peningkatan dalam beberapa tahun terakhir ini.

Kata kunci: CTX-M, ESBL, extended-spectrum β-lactamase, Klebsiella pneumoniae

 

Gene blaCTX-M Mutation as Risk Factor of Antibiotic Resistance

Abstract
Currently there are more than half from all antibiotics used in the world which is belong to β lactam group, but clinical effectiveness of the antibiotics are limited by antibiotic resistance of microorganisms as causative agents from infectious diseases. Several resistance mechanisms for Enterobacteriaceae are mostly caused by enzymatic hydrolysis of antibiotics specific enzymes, called β lactamases. β lactamases represent a large group of enzyme which is genetically and functionally different as extended‑spectrum β-lactamase (ESBL) and known as greatest threat of resistence. Plasmid localization from the encoded gene and enzyme distribution among the pathogen increases every year. Most widespread and clinically relevant ESBL are class A ESBL of Temoniera (TEM), Sulphydryl variable (SHV) and Cefotaxime (CTX-M) types. The purpose of this review was to analyze variant of blaCTX-M gene which cause the most increase incidence of antibiotic resistance. The methods of this review were data-based searching based on Pubmed, Scopus and Google Scholar, without limitation of index factor by using the keyword “blaCTX-M”, “Extended-spectrum β-lactamase”, and “antibiotic resistance”. The conclusion of the review is CTX-M type ESBL have replaced TEM and SHV type as dominant enzyme in last decade. ESBL produced by Klebsiella pneumoniae have emerged as one of major nosocomial pathogens. Nosocomial infection caused by CTX-M-15 in Klebsiella pneumoniae dramatically increased in recent years.

Keywords: CTX-M, ESBL, extended-spectrum β-lactamase, Klebsiella pneumoniae


Keywords


CTX-M; ESBL; Extended-spectrum β-lactamase; Klebsiella pneumoniae

References


World Health Organization. Antimicrobial resistance global report on surveillance: Global report on surveillance. World Health Organization; 2014.

Page MI. The mechanisms of reactions of β-lactam antibiotics. Advan Phys Org Chem. 1987;23:165–270.

Massova I, Mobashery S. Kinship and diversification of bacterial penicillin-binding proteins and beta lactamases. Antimicrob Agents Chemother. 1998;42(1):1–17.

Rubtsova MY, Ulyashova MM, Bachman TT, Schmid RD, Egorov AM. Multiparametric determination of genes and their point mutations for identification of beta-lactamases. Biochemistry (Mosc). 2010;75(13):16 28–49.

Nukaga M, Haruta S, Tanimoto K, Kogure K, Taniguchi K, Tamaki, M, et al. Molecular evolution of a class C graphic-lactamase extending its substrate specificity. Biol Chem. 1995;270:5729–35. doi: 10.1074/jbc.270.11.5729

Ghuysen JM. Molecular structures of penicillin-binding proteins and beta lactamases. Trends Microbiol. 1994;2(10):372–80.

James PA, Reeves DS. Bacterial resistance to cephalosporins as a function of outer membrane permeability and access to their target. J Chemother. 1996;8(2):37–47.

Chambers HF. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev. 1997;10(4):781–91.

Heritier C, Poirel L, Lambert T, Nordmann P. Contribution of acquired carbapenem-hydrolyzing oxacilinases to carbapenem resistance in Acetinobacter baumannii. Antimicrob Agents Chemother. 2005;49(8):3198–202. doi: 10.1128/AAC.49.8.3198-3202.2005

Heritier C, Poirel L, Fournier PE, Claverie JM, Rauolt D, Nordmann P. Characterization of the naturally occurring oxacilinase of Acinetobacter baumannii. Antimicrob Agents Chemother. 2005;49(10):4174–9. doi: 10.1128/AAC.49.10.4174-4179.2005

Livermore DM, Pearson A. Antibiotic resistance: Location, location, location. Clin Microbiol Infect. 2007;13(s2):7–16. doi: 10.1111/j.1469-0691.2007.01724.x

Harada S, Yoshikazu I, Keizo Y. Extended-spectrum β-lactamases: Implications for the clinical laboratory and therapy. Korean J Lab Med. 2008;28(6):401–12. doi: 10.3343/kjlm.2008.28.6.401.

Woodford N, Ellington MJ. The emergence of antibiotic resistance by mutation. Clin Microbiol Infect. 2007;13(1):5–18. doi: 10.1111/j.1469-0691.2006.01492.x

Medeiros AA. Evolution and dissemination of beta-lactamases accelerated by generations of beta-lactam antibiotics. Clin Infect Dis. 1997;24(1):S19–45.

Lakshmi R, Nurin KS, Georgy SA, Sreelakshmi KS. Role of betalactamases in antibiotic resistance. Int Res J Pharm. 2014;5(2):37–40. doi: 10.7897/2230-8407.050207

Poirel L, Naas T, Nordmann P. Genetic support of extended beta-lactamases. Clin Microbiol Infect. 2008;14(1):75–81. doi: 10.1111/j.1469-0691.2007.01865.x

Weldhagen GF. Integrons and beta-lactamases a novel perspective on resistance. Int J Antimicrob Agents. 2004;3(6):556–62. doi: 10.1016/j.ijantimicag.2004.03.007

Livermore DM. β-lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995;8(4):557–84.

Bradford PA. Extended-spectrum-β-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev. 2001;14(4):933–51. doi: 10.1128/CMR.14.4.933-951.2001

Bush K, Fisher JF. Epidemiological expansion structural studies, and clinical challenges of new β-lactamases from gram negative bacteria. Annu Rev Microbiol. 2011;65:455–78. doi: 10.1146/annurev-micro-090110-102911.

Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection. 1983;11(6):315–7.

Ambler RP, Coulson AF, Frere JM, Ghuysen JM, Joris B, Forsman M, et al. A standard numbering scheme for the class A beta-lactamases. Biochem J. 1991;276(Pt 1):269–70.

Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39(6):1211–33.

Rasmussen BA, Bush K. Carbapenem-hydrolyzing beta-lactamases. Antimicrob Agents Chemother. 1997;41(2):223–32.

Paterson DL, Bonomo RA. Extended-spectrum betalactamases: A clinical update. Clin Microbiol Rev. 2005;18(4):657–86. doi: 10.1128/CMR.18.4.657-686.2005

Bush K, Singer SB. Biochemical characteristics of extended broad spectrum β-lactamases. Infection. 1989;17:429–33.

Jacoby GA, Medeiros AA. More extended-spectrum β-lactamases. Antimicrob Agents Chemother. 1991;35(9):1697–704.

Martine´z-Martine´z L, Herna´ndez-Alle´s S, Albertı´ S, Toma´s J, Benedi V, Jacoby G. In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expandedspectrum cephalosporins. Antimicrob Agents Chemother. 1996;40(2):342–8.

Pangon B, Bizet C, Bure´ A, Pichon F, Philippon A, Regnier B, et al. In vivo selection of a cephamycin-resistant, porin-deficient mutant of Klebsiella pneumoniae producing a TEM-3 β-lactamase. J Infect Dis. 1989; 159:1005–6.

Vatopoulos AC, Philippon A, Tzouvelekis LS, Komninou Z, Legakis NJ. Prevalence of a transferable SHV-5 type β-lactamase in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Greece. J Antimicrob Chemother. 1990;26(5):635–48. doi: 10.1093/jac/26.5.635

Jacoby G, Munoz-Price L. The new β-lactamases. N Engl J Med. 2005;352(4):380–91. doi: 10.1056/NEJMra041359

Livermore DM, Cantón R, Gniad-kowski M, Nordmann P, Rossolini GM, Arlet G, et al. CTX-M: Changing the face of ESBLs in Europe. J Antimicrob Chemother. 2007;59(2):165–74. doi: 10.1093/jac/dkl483

Charrouf FO, Hamze M, Mallat H, Achkar H, Daboussi F. Characterization of resistance genes in 68 ESBL-producing Klebsiella pneumonia in Lebanon. Med Mal Infect. 2014;44(11–12):535–8. doi: 10.1016/j.medmal.2014.10.001.

Lewis JS, Herrera M, Wickes B, Patterson JE, Jorgensen JH. First report of the emergence of CTX-M-type extended-spectrum betalactamases (ESBLs) as the predominant ESBL isolated in a U.S. health care system. Antimicrob Agents Chemother. 2007;51(11):4015–21. doi: 10.1128/AAC.00576-07

Wang G, Huang T, Surendraiah PK, Wang K, Komal R, Zhuge J, et al. CTX-M β-Lactamase–producing Klebsiella pneumoniae in Suburban New York, New York, USA. Emerg Infect Dis. 2013;19(11):1803–10. doi: 10.3201/eid1911.121470

Lee MY, Ko KS, Kang CI, Chung DR, Peck KR, Song JH. High prevalence of CTX-M-15 producing Klebsiella pneumoniae isolates in Asian countries: Diverse clones and clonal dissemination. Int J Antimicrob Agents. 2011;38(2):160–3. doi: 10.1016/j.ijantimicag.2011.03.020.

Baraniak A, Izdebski R, Fiett J, Sadowy E, Adler A, Kazma M, et al. Comparative population analysis of Klebsiella pneumoniae strains with extended-spectrum β-lactamases colonizing patients in rehabilitation centers in four countries. Antimicrob Agents Chemother. 2013;57(4):1992–7. doi: 10.1128/AAC.02571-12

D’Andrea MM, Arena F, Pallecchi L, Rossolini GM. CTX-M-type β lactamases: A successful story of antibiotic resistance. Int J Med Microbiol. 2013;303(6–7):305–17. doi: 10.1016/j.ijmm.2013.02.008

Rodrigues C, Machado E, Ramos H, Peixe L, Novais Â. Expansion of ESBL producing Klebsiella pneumoniae in hospitalized patients: A successful story of international clones (ST15,ST147,ST336) and epidemic plasmids (IncR,IncFIIK). Int J Med Microbiol. 2014;304(8):1100–8. doi: 10. 1016/j.ijmm.2014.08.003

Rossolini GM, D’Andrea MM, Mugnaioli C. The spread of CTXM- type extended-spectrum beta-lactamases. Clin Microbiol Infect. 2008;14(1):33–41. doi: 10.1111/j.1469-0691.2007.01867.x

Bonnet R. Growing group of extended-spectrum beta-lactamases: The CTX-M enzymes. Antimicrob Agents Chemother. 2004;48(1):1–14.

Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b-ST131: A pandemic, multiresistant, community-associated strain. J Antimicrob Chemother. 2011;66(1):1–14. doi: 10.1093/jac/dkq415.

Zhang J, Zhou K, Zheng B, Zhao L, Shen P, Ji J, et al. High prevalence of ESBL-producing Klebsiella pneumoniae causing community-onset infections in China. Front Microbiol. 2016;7:1830. doi: 10.3389/fmicb.2016.01830

Mathers AJ, Peirano G, Pitout JD. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clin Microbiol Rev. 2015;28(3):565–91. doi: 10.1128/CM R.00116-14.

Carattoli A. Resistance plasmid families in Enterobacteriaceae. Antimicrob. Agents Chemother. 2009;53(6):2227–38. doi: 10.1128/AAC.01707-08

Canton R, Gonzalez-Alba JM, Juan CC. CTX-M enzymes: Origin and diffusion. Front Microbiol. 2012;3:110. doi: 10.3389/fmicb.2012.00110

Cantón R. Epidemiology and evolution of β-lactamase in evolutionary biology of bacterial and fungal pathogens, eds Baquero F, Nombela C, Casslel GH, Gutierrez-Fuentes JA. Washington: ASM Press; 2008.

Poirel L, Naas T, Nordmann P. Genetic support of extended-spectrum β-lactamases. Clin Microbiol Infect. 2008;14(1):75–81. doi: 10.1111/j.1469-0691.2007.01865.x

Bauernfield A, Grimm H, Shweighart S. A new plasmidic cefotaximase in a clinical isolate of Escherichia coli. Infection. 1990;18(5):294–8.

Barthe´le´my M, Pe´duzzi J, Bernard H, Tancre`de C, Labia R. Close amino acid sequence relationship between the new plasmid-mediated extended-spectrum β-lactamase MEN-1 and chromosomally encoded enzymes of Klebsiella oxytoca. Biochim Biophys Acta. 1992;1122(1):15–22.

Gniadkowski MI, Schneider A, Palucha R, Jungwirth B, Mikiewicz, Bauernfeind A. Cefotaxime-resistant Enterobacteriaceae isolates from a hospital in Warsaw, Poland: identification of a new CTX-M-3 cefotaxime-hydrolyzing β-lactamase that is closely related to the CTX-M-1/ MEN-1 enzyme. Antimicrob Agents Chemother. 1998;42(4):827–32.

Karim AL, Poirel S, Nagarajan, Nordmann P. Plasmid mediated extended-spectrum β-lactamase (CTX -M-3 like) from India and gene association with insertion sequence ISEcp1. FEMS Microbiol Lett. 2001;201(2):237–41.

Kariuki SJE, Corkill G, Revathi R, Musoke, CA Hart. Molecular characterization of a novel plasmid-encoded cefotaximase (CTX-M-12) found in clinical Klebsiella pneumoniae isolates from Kenya. Antimicrob Agents Chemother. 2001;45(7):2141–3. doi: 10.1128/AAC.45.7.2141-2143.2001

Matsumoto Y, Ikeda F, Kamimura T, Yokota Y, Mine Y. Novel plasmid-mediated beta-lactamase from Escherichia coli that inactivates oxyimino-cephalosporins. Antimicrob Agents Chemother. 1988;32(8):1243–6. doi: 10.1128/AAC.32.8.1243

Oliver A, Perez-Diaz JC, Coque TM, Baquero F, Canton R. Nucleotide sequence and characterization of a novel cefotaxime-hydrolyzing beta-lactamase (CTX-M-10) isolated in Spain. Antimicrob Agents Chemother. 2001;45(2):616–20. doi: 10.1128/AAC.45.2.616-620.2001

Bauernfeind A, Stemplinger I, Jungwirth R, Ernst S, Casellas JM. Sequences of beta-lactamase genes encoding CTX-M-1 (MEN-1) and CTX-M-2 and relationship of their amino acid sequences with those of other beta-lactamases. Antimicrob Agents Chemother. 1996;40(2):509–13.

Bradford PA, Yang Y, Sahm D, Grope I, Gardovska D, Storch G. CTX-M-5, a novel cefotaxime-hydrolyzing β-lactamase from an outbreak of Salmonella typhimurium in Latvia. Antimicrob. Agents Chemother. 1998; 42(8):1980–4.

Gazouli ME, Tzelepi A, Markogiannakis A, Legakis NJ, Tzouvelekis LS. Two novel plasmid-mediated cefotaxime-hydrolyzing β-lactamases (CTX-M-5 and CTX-M-6) from Salmonella typhimurium. FEMS Microbiol Lett. 1998;165(2):289–93. doi: 10.1111/j.1574-6968.1998.tb13159.x

Gazouli M, Tzelepi E, Sidorenko SV, Tzouvelekis LS. Sequence of the gene encoding a plasmid-mediated cefotaxime-hydrolyzing class A β-lactamase (CTX-M-4): Involvement of serine 237 in cephalosporin hydrolysis. Antimicrob Agents Chemother. 1998;42(5):1259–62.

Ishii Y, Ohno A, Taguchi H, Imajo S, Ishiguro M, Matsuzawa H. Cloning and sequence of the gene encoding a cefotaxime-hydrolyzing class A β-lactamase isolated from Escherichia coli. Antimicrob Agents Chemother. 1995;39(10):2269–75. doi: 10.1128/AAC.39.10.2269

Saladin M, Cao VTB, Lambert T, Donay JL, Herrmann JL, Ould-Hocine Z, Verdet C, Delisle F, Philippon A, Arlet G. Diversity of CTX-M beta-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol Lett. 2002;209(2):161–8. doi: 10.1111/j.1574-6968.2002.tb11126.x

Tassios PT, Gazouli M, Tzelepi E, Milch H, Kozlova N, Sidorenko S, Legakis NJ, Tzouvelekis LS. Spread of Salmonella typhimurium clone resistant to expanded-spectrum cephalosporins in three European countries. J Clin Microbiol. 1999;37:3774–7.

Bonnet R, Sampaio JLM, Labia R, De Champs C, Sirot D, Chanal C, Sirot J. A novel CTX-M β-lactamase (CTX-M-8) in cefotaximeresistant Enterobacteriaceae isolated in Brazil. Antimicrob Agents Chemother. 2000;44(7):1936–42. doi: 10.1128/AAC.44.7.1936-1942.2000

Bonnet R, Dutour C, Sampaio JLM, Chanal C, Sirot D, Labia R, De Champs C, Labia R, Sirot J. Novel cefotaximase (CTX-M-16) with increased catalytic efficiency due to substitution Asp240Gly. Antimicrob Agents Chemother. 2001;45(8):2269–75. doi: 10.1128/AAC.45.8.2269-2275.2001

Bonnet R, Recule C, Baraduc R, Chanal C, Sirot D, De Champs C, Sirot J. Effect of D240G substitution in a novel ESBL CTX-M-27. J Antimicrob Chemother. 2003;52:29–35. doi: 10.1093/jac/dkg256

Cao V, Lambert T, Courvalin P. ColE1-like plasmid pIP843 of Klebsiella pneumoniae encoding extended-spectrum beta-lactamase CTXM-17. Antimicrob Agents Chemother. 2002;46(5):1212–7. doi: 10.1128/AAC.46.5.1212-1217.2002

Chanawong A, M’Zali FH, Heritage J, Xiong JH, Hawkey PM. Three cefotaximases, CTX-M-9, CTX-M-13, and CTX-M-14, among Enterobacteriaceae in the people’s Republic of China. Antimicrob Agents Chemother. 2002;46(3):630–7. doi: 10.1128/AAC.46.3.630-637.2002

Labia R. Analysis of the blaToho gene coding for Toho-2 _β-lactamase. Antimicrob Agents Chemother. 1999; 43(10):2576–7.

Ma L, Ishii Y, Ishiguro M, Matsuzawa H, Yamaguchi K. Cloning and sequencing of the gene encoding Toho-2, a class A β-lactamase preferentially inhibited by tazobactam. Antimicrob Agents Chemother. 1998;42(5):1181–6.

Pai H, Choi EH, Lee HJ, Hong JY, Jacoby GA. Identification of CTX-M-14 extended-spectrum beta-lactamase in clinical isolates of Shigella sonnei, Escherichia coli, and Klebsiella pneumoniae in Korea. J Clin Microbiol. 2001;39(10):3747–9. doi: 10.1128/JCM.39.10.3747-3749.2001

Poirel L, Naas T, Le Thomas I, Karim A, Bingen E, Nordmann P. CTX-M-type extended-spectrum beta-lactamase that hydrolyzes ceftazidime through a single amino acid substitution in the omega loop. Antimicrob Agents Chemother. 2001;45(12):3355–61. doi: 10.1128/AAC.45.12.3355-3361.2001

Sabate´ M, Tarrago R, Navarro F, Miro E, Verge´s C, Barbe´ J, Prats G. Cloning and sequence of the gene encoding a novel cefotaxime-hydrolyzing β-lactamase (CTX-M-9) from Escherichia coli in Spain. Antimicrob Agents Chemother. 2000;44(7):1970–3.

Saladin M, Cao VT, Lambert T, Donay JL, Herrmann JL, Ould-Hocine Z, et al. Diversity of CTX-M beta-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol Lett. 2002;209(2):161–8. doi: 10.1111/j.1574-6968.2002.tb11126.x

Tzouvelekis LS, Tzelepi E, Tassios PT, Legakis NJ. CTX-M-type beta-lactamases: An emerging group of extended spectrum enzymes. Int J Antimicrob Agents. 2000;14(2):137–42.

Bonnet R, Champs CD, Sirot D, Chanal C, Labia R, Sirot J. Diversity of TEM mutants in Proteus mirabilis. Antimicrob Agents Chemother. 1999;43(11):2671–7.

Oteo J, Pérez-Vázquez M, Campos J. Extended-spectrum β-lactamase producing Escherichia coli: Changing epidemiology and clinical impact. Curr Opin Infect Dis. 2010;23(4):320–6.

Naseer U, Sundsfjord A. CTX-M conundrum: dissemination of plasmids and Escherichia coli clones. Microb Drug Resist. 2011;17(1):83–97.

Shimamura T, Ibuka A, Fushinobu S, Wakagi T, Ishiguro M, Ishii Y, et al. Acyl-intermediate structures of the extended-spectrum class A β-lactamase, Toho-1, in complex with cefotaxime, cephalothin, and benzylpenicillin. J Biol Chem. 2002;277:46601–8. doi: 10.1074/jbc.M207884200

Chen Y, Delmas J, Sirot J, Shoichet B, Bonnet R. Atomic resolution structures of CTX-M β-lactamases: Extended spectrum activities from increased mobility and decreased stability. J Mol Biol. 2005;348(2):349–62. doi: 10.1016/j.jmb.2005.02.010

Gazouli M, Tzelepi E, Sidorenko SV, Tzouvelekis LS. Sequence of the gene encoding a plasmid-mediated cefotaxime-hydrolyzing class A b-lactamase (CTX-M-4): Involvement of serine 237 in cephalosporin hydrolysis. Antimicrob Agents Chemother. 1998;42(5):1259–62.

Novais A, Comas I, Baquero F, Canton R, Coque TM, et al. Evolutionary trajectories of beta-lactamase CTX-M- 1 cluster enzymes: Predicting antibiotic resistance. PLoS Pathog. 2010;6(1):e1000735. doi: 10.1371/journal.ppat.1000735

Poirel L, Gniadkowski M, Nordmann P. Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum beta-lactamase CTX-M-15 and of its structurally related beta-lactamase CTX-M-3. J Antimicrob Chemother. 2002;50(6):1031–4. doi: 10.1093/jac/dkf240

Novais A, Canton R, Coque TM, Moya A, Baquero F, et al. Mutational events in cefotaximases extended-spectrum β-lactamases of the CTX-M-1 cluster involved in ceftazidime resistance. Antimicrob Agents Chemother. 2008;52(7):2377–82. doi: 10.1128/AAC.016 58-07

Knox JR. Extended-spectrum and inhibitor-resistant TEM-type β-lactamases: Mutations, specificity, and three-dimensional structure. Antimicrob Agents Chemother. 1995;39(12):2593–601.

Cantu C, Huang W, Palzkill T. Selection and characterization of amino acid substitutions at residues 237–240 of TEM-1 β-lactamase with altered substrate specificity for aztreonam and ceftazidime. J Biol Chem. 1996; 271:22538–45. doi: 10.1074/jbc.271.37.22538

Huletsky A, Knox JR, Levesque RC. Role of Ser-238 and Lys-240 in the hydrolysis of third-generation cephalosporins by SHV-type β-lactamases probed by site-directed mutagenesis and three-dimensional modeling. J Biol Chem. 1993;268(5):3690–7.

Bonnet R, Dutour C, Sampaio JLM, Chanal C, Sirot D, Labia R, et al. Novel cefotaximase (CTX-M-16) with increased catalytic efficiency due to substitution Asp240Gly. Antimicrob Agents Chemother. 2001;45(8):2269–75. doi: 10.1128/AAC.45.8.2269-2275.2001

Bonnet R, Recule C, Baraduc R, Chanal C, Sirot D, De Champs C, et al. Effect of D240G substitution in a novel ESBL CTX-M-27. J Antimicrob Chemother. 2003;52:29–35. doi: 10.1093/jac/dkg256

Coque TM, Baquero F, Cantón R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill. 2008;13(47):19044.

Angel DM, Ramón HJ, Martínezz ML, Rodríguez BJ, Pascual A, Grupode Estudio de Infección Hospitalaria (GEIH). Extended-spectrum β-lactamase- producing Escherichia coli and Klebsiella pneumoniae in Spanish hospitals: 2ndmulticenter study (GEIH-BLEE project, 2006). Enferm Infect Microbiol Clin. 2009;27(9):503–10. doi: 10.1016/j.eimc.2008.09.006

Hawkey PM, Jones AM. The changing epidemiology of resistance. J Antimicrob Chemother. 2009;64:i3–i10. doi: 10.1093/jac/dkp256

Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–76. doi: 10.1128/AAC.01009-09

Rodriguez VH, Bogaerts P, Berhin C, Baurain C, Deplano A, Montesinos I, et al. Trends in production of extended-spectrum β-lactamases among Enterobacteriaceae of clinical interest: results of a nation wide survey in Belgian hospitals. J Antimicrob Chemother. 2011;66(1):37–47. doi: 10.1093/jac/dkq388

Cantón R, Coque TM. The CTX-M β-lactamase pandemic. Curr Opin Microbiol. 2006;9(5):466–75. doi: 10. 1016/j.mib.2006.08.011

Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b-ST131: A pandemic, multiresistant, community-associated strain. J Antimicrob Chemother. 2011;66(1):1–14. doi: 10.1093/jac/dkq415

Woodford N, Ward ME, Kaufmann ME, Turton J, Fagan EJ, James D, et al. Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum β-lactamases in the UK. J Antimicrob Chemother. 2004;54(4):735–43. doi: 10.1093/jac/dkh424

Morosini MI, García-Castillo M, Coque TM, Valverde A, Novais A, Loza E, et al. Antibiotic coresistance in extended-spectrum-β-lactamase-producing Enterobacteriaceae and in vitro activity of tigecycline. Antimicrob Agents Chemother. 2006;50(8):2695–9. doi: 10.1128/AAC.00155-06

Cantón R, Ruiz-Garbajosa P. Co-resistance: an opportunity for the bacteria and resistance genes. Curr Opin Pharmacol. 2011;11(5):477–85. doi: 10.1016/j.coph.2011.07.007

Cantón R, Novais A, Valverde A, Machado E, Peixe L, Baquero F, et al. Prevalence and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae in Europe. Clin Microbiol Infect. 2008;14(1):144–53. doi: 10.1111/j.1469-0691.2007.01850.x

Hawkey PM, Jones AM. The changing epidemiology of resistance. J Antimicrob Chemother. 2009;64:i3–i10. doi: 10.1093/jac/dkp256

Dolejska M, Frolkova P, Florek M, Jamborova I, Purgertova M, Kutilova I, et al. CTX-M-15 producing Escherichia coli clone B2-O25b-ST131 and Klebsiella spp isolates in municipal wastewater treatment plant effluents. J Antimicrob Chemother. 2011;66(12):2784–90. doi: 10.1093/jac/dkr363

Hiroi M, Yamazaki F, Harada T, Takahashi N, Iida N, Noda Y, et al. Prevalence of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in food producing animals. J Vet Med Sci. 2012;74(2):189–95. doi: 10.1292/jvms.11-0372

Carattoli A. Animal reservoirs for extended spectrum β-lactamase producers. Clin Microbiol Infect. 2008; 14(1):117–23. doi: 10.1111/j.1469-0691. 2007.01851.x

Rodríguez-Baño J, Navarro MD. Extended-spectrum β-lactamases in ambulatory care: A clinical perspective. Clin Microbiol Infect. 2008;14:104–10. doi: 10.1111/j.1469-0691.2007.01866.x

Rodríguez-Baño J, Pascual A. Clinical significance of extended-spectrum β-lactamases. Expert Rev Anti Infect Ther. 2008;6(5):671–83. doi: 10.1586/14787210.6.5.671.




DOI: https://doi.org/10.15416/ijcp.2017.6.2.135

Refbacks

  • There are currently no refbacks.


 Indonesian Journal of Clinical Pharmacy is indexed by

        

  Creative Commons License

IJCP by Universitas Padjadjaran is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

 

View My Stats