Penggunaan Gen E6 Sebagai Target Deteksi Human Papillomavirus Tipe 11 dengan Metode Polymerase Chain Reaction
Abstract
Infeksi Human Papillomavirus (HPV) tipe 11 dapat menyebabkan penyakit condyloma acuminate yang merupakan salah satu faktor risiko terjadinya kanker anogenital. Sampai saat ini, proses deteksi dini HPV kelompok low risk, termasuk untuk tipe 11 didasarkan pada metode polymerase chain reaction (PCR) umumnya pada gen L1. Namun terdapat kelemahan deteksi berdasarkan gen L1 yaitu tidak tersisipnya gen ini pada genom pasien yang terinfeksi dan laju mutasinya tinggi. Penelitian ini bertujuan untuk mendesain primer berdasarkan urutan nukleotida gen E6 dari HPV tipe 11 dan melakukan pilot implementation penggunaan primer pada spesimen apusan serviks pasien rawat jalan RSUD Bangil, Jawa Timur. Pembuatan primer untuk deteksi keberadaan virus HPV tipe 11 dilakukan dengan menggunakan perangkat lunak Primer3 Plus, analisis dilakukan dengan Oligoanalyzer 3.1 dan BLASTn, yang semuanya merupakan perangkat lunak open source. Primer3 Plus dan BLASTn dari National Center for Biotechnology Information (NCBI), sedangkan Oligoanalyzer 3.1 dari Integrated DNA Technologies. Optimasi suhu penempelan (annealing) primer untuk identifikasi gen E6 HPV tipe 11 dilakukan pada gradien suhu 44–63°C. Proses pilot implementation primer dilakukan selama satu bulan pada pasien rawat jalan baru yang diduga terinfeksi HPV. Pasangan primer E11(+)/E11(-) telah dirancang, dengan urutan 5’-GTA AAG ATG CCT CCA CGT CT-3’ dan 5’-CTA CTG TAG GTG CAT ATG CAG C-3’, yang menempel dan memperbanyak area pada basa ke 8 - 268 dari gen E6. Pasangan primer tersebut memenuhi syarat sebagai primer ideal untuk deteksi HPV tipe 11 ditinjau dari berbagai parameter. Pada reaksi PCR dihasilkan hanya satu pita DNA berukuran ~260 bp pada gradien suhu antara 44–63°C dengan menggunakan template dari DNA pasien positif terinfeksi HPV tipe 11. Total terdapat empat pasien yang dirujuk oleh dokter selama periode pengambilan data untuk ditentukan kemungkinannya terinfeksi HPV. Satu di antara keempat pasien tersebut (B1) terdeteksi positif mengandung gen L1 dari HPV pada PCR menggunakan primer GP5(+)/GP6(+). Berdasarkan deteksi dengan pasangan primer E11(+)/E11(-), keempat sampel tersebut mengandung HPV tipe 11. Dapat disimpulkan bahwa primer E11(+)/E11(-) yang didasarkan pada gen E6 dapat mendeteksi keberadaan HPV tipe 11 lebih akurat dibandingkan primer yang didasarkan pada urutan gen L1.
Kata kunci: HPV tipe 11, primer GP5(+)/GP6(+), primer E11(+)/E11(-)
The Use of E6 Gene as a Target of Human Papillomavirus Type 11 Detection Using Polymerase Chain Reaction
Abstract
The Human Papillomavirus (HPV) type 11 infection, potentially trigger condyloma acuminate, which is a risk factor of anogenital cancer. Recently, the low risk HPV groups, particularly type 11, was detected on the L1 gene by polymerase chain reaction (PCR) method. Meanwhile, the weakness of using the L1 sequence include its high mutation rate and the facts that the gene was not inserted into the human genome during infection. Therefore, this study aims to design primer pair, based on nucleotide sequence of the E6 gene for type 11 HPV, and to conduct their implementation using the cervical swabs samples from RSUD Bangil, East Java, Indonesia. The Primer3 Plus software was used to design the primers and further analysed them using both Oligoanalyzer 3.1 and BLASTn from NCBI. The annealing temperature of PCR was optimized at the gradient ranging from 44–63°C. The pilot implementation of primer was conducted approximately a month for new outpatients suspected of being infected with HPV. The primers pair, such as E11(+)/E11(-), designed into the following sequences: 5’-GTA AAG ATG CCT CCA CGT CT-3’ and 5’-CTA CTG TAG GTG CAT ATG CAG C-3’ were presented in the 8 to 288 E6 gene. These were the ideal primers for type 11 HPV in terms of various parameters. Meanwhile, only one band of ~260-bp size appeared at the end of PCR on the annealing gradient temperature between 44–63°C using the total DNA obtained from patients infected with type 11 HPV as a template. A total of four patients were referred by doctors during the data collection period to test for the possibility of HPV infection. However, one of them (code B1) was detected positively for having the L1 gene on PCR using the GP5(+)/GP6(+) primers. Based on the detection of E6 gene using E11(+)/E11(-) primer, all the patients’ samples contained type 11 HPV. In conclusion, the E6 gene based-primers, such as E11(+)/E11(-), detected the presence of type 11 HPV more accurately compared to the L1 sequence.
Keywords: Type 11 HPV, primer E11(+)/E11(-), primer GP5(+)/GP6(+)
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Fernandes JV, de Araújo JMG, Fernandes TM. Biology and natural history of human papillomavirus infection. Open Access J Clin Trials. 2013;5(1):1–12. doi: 10.2147/OAJCT.S37741
Doorbar J, Egawa N, Griffin H, Kranjec C, Murakami I. Human papillomavirus molecular biology and disease association. Rev Med Virol. 2016;25(S1):2–23. doi: 10.1002/rmv.1822
Knipe DM, Howley PM. Fields virology. 6th Edition. Philadelphia: Lippincott Williams &Wilkins; 2013.
Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC. Human papillomavirus and cervical cancer. Lancet. 2013;382(9895):889–99. doi: 10.1016/S0140-6736(13)60022-7
Cho CY, Lo YC, Hung MC, Lai CC, Chen CJ, Wu KG. Risk of cancer in patients with genital warts: A nationwide, population-based cohort study in Taiwan. PLoS One. 2017;12(8):1–15. doi: 10.1371/journal.pone.0183183
Blomberg M, Friis S, Munk C, Bautz A, Kjaer SK. Genital warts and risk of cancer: A danish study of nearly 50000 patients with genital warts. J Infect Dis. 2012;205(10):1544–53. doi: 10.1093/infdis/jis228
Dyne EA Van, Henley SJ, Saraiya M, Thomas CC, Markowitz LE, Benard VB. Trends in human papillomavirus –Associated Cancers—United States, 1999–2015. Weekly I. 2018;67(33):918–24. doi: 10.15585/mmwr.mm6733a2
Duan R, Qiao Y, Clifford G, Zhao F. Cancer burden attributable to human papillomavirus infection by sex, cancer site, age, and geographical area in China. Cancer Med. 2020;9(1):374–84. doi: 10.1002/cam4.2697
Hartwig S, St Guily JL, Dominiak-Felden G, Alemany L, de Sanjosé S. Estimation of the overall burden of cancers, precancerous lesions, and genital warts attributable to 9-valent HPV vaccine types in women and men in Europe. Infect Agent Cancer. 2017;12(1):1–10. doi: 10.1186/s13027-017-0129-6
Stier EA, Sebring MC, Mendez AE, Ba FS, Trimble DD, Chiao EY. Prevalence of anal human papillomavirus infection and anal HPV-related disorders in women: A systematic review. Am J Obstet Gynecol. 2015;213(3):278–309. doi: 10.1016/j.ajog.2015.03.034
Ong KJ, Checchi M, Burns L, Pavitt C, Postma MJ, Jit M. Systematic review and evidence synthesis of non-cervical human papillomavirus-related disease health system costs and quality of life estimates. Sex Transm Infect. 2019;95(1):28–35. doi: 10.1136/sextrans-2018-053606
Chesson HW, Ekwueme DU, Saraiya M, Watson M, Lowy DR, Markowitz LE. Estimates of the annual direct medical costs of the prevention and treatment of disease associated with human papillomavirus in the United States. Vaccine. 2012;30(42):6016–9. doi: 10.1016/j.vaccine.2012.07.056
Östensson E, Silfverschiöld M, Greiff L, Asciutto C, Wennerberg J, Lydryp ML, et al. The economic burden of human papillomavirus-related precancers and cancers in Sweden. PLoS One. 2017;12(6):1–20. doi: 10.1371/journal.pone.0179520
Munoz N, Kjaer SK, Sigurdsson K, Iversen OE, Hernandez-Avila M, Wheeler CM, et al. Impact of human papillomavirus (HPV)-6/11/16/18 vaccine on all HPV-associated genital diseases in young women. J Natl Cancer Inst. 2010;102(5):325–39. doi: 10.1093/jnci/djp534
Choi H. Can quadrivalent human papillomavirus prophylactic vaccine be an effective alternative for the therapeutic management of genital warts? An exploratory study. Int Braz J Urol. 2019;45(2):361–8. doi: 10.1590/S1677-5538.IBJU.2018.0355
Navarro-Illana E, López-Lacort M, Navarro-Illana P, Vilata JJ, Diez-Domingo J. Effectiveness of HPV vaccines against genital warts in women from Valencia, Spain. Vaccine. 2017;35(25):3342–6. doi: 10.1016/j.vaccine.2017.04.080
Agustina R, Dartanto T, Sitompul R, Susiloretni KA, Suparmi, Achadi EL, et al. Universal health coverage in Indonesia: concept, progress, and challenges. Lancet. 2019;393(10166):75–102. doi: 10.1016/S0140-6736(18)31647-7
Kosen S, Andrijono A, Ocviyanti D, Indriatmi W. The cost-effectiveness of quadrivalent human papillomavirus vaccination in Indonesia. Asian Pac J Cancer Prev. 2017;18(7):2011–7. doi: 10.22034/APJCP.2017.18.7.2011
Health Technology Assessment (HTA) and Pharmacoeconomics Research Center, Faculty of Pharmacy, Universitas Gadjah Mada. Post-introduction evaluation of HPV vaccine programme in Indonesia, 2018. [Diunduh pada: 26 Juli 2020]. Tersedia dari: https://www.who.int/docs/default-source/searo/indonesia/hpv-eva luation-vaccine-programme-post-itro duction-final-report-nov2018.pdf?sf vrsn=9b63f1e9_2
Abreu ALP, Souza RP, Gimenes F, Consolaro MEL. A review of methods for detect human papillomavirus infection. Virol J. 2012;9(1):1–9. doi: 10.1186/1743-422X-9-262
de Roda Husman AM, Walboomers JMM, van den Brule AJC, Meijer CJLM, Snijders PJF. The use of general primers GP5 and GP6 elongated at their 3’ ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J Gen Virol. 1995;76(4):1057–62. doi: 10.1099/0022-1317-76-4-1057
Yue Y, Yang H, Wu K, Yang L, Chen J, Huang X, et al. Genetic Variability in L1 and L2 Genes of HPV-16 and HPV-58 in Southwest China. PLoS One. 2013;8(1):1–12. doi: 10.1371/journal.pone.0055204
Xu J, Tan L, Wang T, Cui F, Ding X, Wan Q, et al. Genetic variability of human papillomavirus type 51 E6, E7, L1 and L2 genes in Southwest China. Gene. 2019;690:99–112. doi: 10.1016/j.gene.2018.12.032
Tjalma WAA, Depuydt CE. Cervical cancer screening: Which HPV test should be used-L1 or E6/E7? Eur J Obstet Gynecol Reprod Biol. 2013;170(1):45–6. doi: 10.1016/j.ejogrb.2013.06.027
World Health Organization. Cancer country profiles: United States of America, 2014. [Diunduh pada: 25 Juli 2018]. Tersedia dari: http://www.who.int/cancer/country- profiles/usa_en.pdf?ua=1
Wahidin M, Noviani R, Hermawan S, Andriani V, Ardian A, Djarir H. Population-based cancer registration in indonesia. Asian Pacific J Cancer Prev. 2012;13(4):1709–10. doi: 10.7314/APJCP.2012.13.4.1709
Kementerian Kesehatan Republik Indonesia. Riset kesehatan dasar (Riskesdas); 2013. [Diunduh pada: 26 Juli 2020]. Tersedia dari: https://www.kemkes.go.id/resources/download/genermal/HasilRiskesdas2013.pdf
Pimenta JM, Galindo C, Jenkins D, Taylor SM. Estimate of the global burden of cervical adenocarcinoma and potential impact of prophylactic human papillomavirus vaccination. BMC Cancer. 2013;13:553. doi: 10.1186/1471-2407-13-553
Arbyn M, Castellsagué X, de sanjosé S, Bruni L, Saraiya M, Bray F, et al. Worldwide burden of cervical cancer in 2008. Ann Oncol. 2011;22(12):2675–86. doi: 10.1093/annonc/mdr015
Pendrith C, Thind A, Zaric GS, Sarma S. Costs of cervical cancer treatment: Population-based estimates from Ontario. Curr Oncol. 2016;23(2):e109–15. doi: 10.3747/co.23.2598
Carvalho N de O, del Castillo DM, Perone C, Januário JN, de Melo VH, Filho GB. Comparison of HPV genotyping by type-specific PCR and sequencing. Mem Inst Oswaldo Cruz. 2010;105(1):73–8. doi: 10.1590/S0074-02762010000100011
Tao X, Zheng B, Yin F, Zeng Z, Li Z, Griffith CC, et al. Polymerase chain reaction human papillomavirus (HPV) detection and HPV genotyping in invasive cervical cancers with prior negative HC2 test results. Am J Clin Pathol. 2017;147(5):477–83. doi: 10.1093/ajcp/aqx027
Szuhai K, Sandhaus E, Kolkman-Uljee SM, Lemaitre M, Truffert JC, Dirks RW, et al. A novel strategy for human papillomavirus detection and genotyping with sybrgreen and molecular beacon polymerase chain reaction. Am J Pathol. 2001;159(5):1651–60. doi: 10.1016/S0002-9440(10)63012-X
Moody CA, Laimins LA. Human papillomavirus oncoproteins: Pathways to transformation. 2010;10(8):550–60. doi: 10.1038/nrc2886
Zhang L, Yang B, Zhang A, Zhou A, Yuan J, Wang Y, Sun L, et al. Association between human papillomavirus type 16 E6 and E7 variants with subsequent persistent infection and recurrence of cervical high-grade squamous intraepithelial lesion after conization. J Med Virol. 2016;88(11):1982–8. doi: 10.1002/jmv.24541
Tomaić V. Functional roles of E6 and E7 oncoproteins in HPV-induced malignancies at diverse anatomical sites Cancers. 2016;8(10):95. doi: 10.3390/ca ncers8100095
Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JAM. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007;35(2):71–4. doi: 10.1093/nar/gkm306
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134. doi: 10.1186/1471-2105-13-134
Dieffenbach CW, Lowe TMJ, Dveksler GS. General concepts for PCR primer design. Genome Res. 1993;3:S30–7.
Hyndman DL, Mitsuhashi M. PCR primer design. Methods Mol Biol. 2003;226:81–8. doi: 10.1385/1-59259-384-4:81
Erhart SMM, Rivero ERC, Bazzo ML Onofre ASC. Comparative evaluation of the GP5+/6+, MY09/11 and PGMY09/11 primer sets for HPV detection by PCR in oral squamous cell carcinomas. Exp Mol Pathol. 2016;100(1):13–6. doi: 10.1016/j.yexmp.2015.11.024
Yuan H, Zhou D, Wang J, Schlegel R. Divergent human papillomavirus associated with recurrent respiratory papillomatosis with lung involvement. Genome Announc. 2013;1(4):2013. doi: 10.1128/genomeA.00474-13
Kocjan BJ, Gale N, Boltežar IH, Seme K, Komlos KF, Hosnjak L, et al. Identical human papillomavirus (HPV) genomic variants persist in recurrent respiratory papillomatosis for up to 22 years. J Infect Dis. 2013;207(4):583–7. doi: 10.1093/infdis/jis733
Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, et al. BLAST: A more efficient report with usability improvements. Nucleic Acids Res. 2013;41(W1):29–33. doi: 10.1093/nar/gkt282
Yu Y, Jin D, Hu S, Zhang Y, Zheng X, Zheng J, et al. A novel tuberculosis antigen identified from human tuberculosis granulomas. Mol Cell Proteomics. 2015; 14(4):1093–103. doi: 10.1074/mcp.M114.045237
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Memm M, et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):1–12. doi: 10.1093/nar/gks596
Toliman PJ, Kaldor JM, Tabrizi SN, Vallely AJ. Innovative approaches to cervical cancer screening in low- and middle-income countries. Climacteric. 2018;21(3):235–8. doi: 10.1080/13697137.2018.1439917
Kunckler M, Schumacher F, Kenfack B, Catarino R, Viviano M, Tincho E, et al. Cervical cancer screening in a low-resource setting: a pilot study on an HPV-based screen-and-treat approach. Cancer Med. 2017;6(7):1752–61. doi: 10.1002/cam4.1089
Catarino R, Petignat P, Dongui G, Vassilakos P. Cervical cancer screening in developing countries at a crossroad: Emerging technologies and policy choices. World J Clin Oncol. 2015;6(6):281–90. doi: 10.5306/wjco.v6.i6.281
Parra S, Carranza E, Coole J, Hunt B, Smith C, Keahey P, et al. Development of low-cost point-of-care technologies for cervical cancer prevention based on a single-board computer. IEEE J Transl Eng Heal Med. 2020;8:8978694. doi: 10.1109/JTEHM.2020.2970694
Allen-Leigh B, Uribe-Zúñiga P, León-Maldonado L, Brown BJ, Lorincz A, Salmeron J, et al. Barriers to HPV self-sampling and cytology among low-income indigenous women in rural areas of a middle-income setting: A qualitative study. BMC Cancer. 2017;17(1):1–11. doi: 10.1186/s12885-017-3723-5
Jaspers L, Budiningsih S, Wolterbeek R, Henderson FC, Peters AAW. Parental acceptance of human papillomavirus (HPV) vaccination in Indonesia: A cross-sectional study. Vaccine. 2011;29(44):7785–93. doi: 10.1016/j.vaccine.2011.07.107
Toh ZQ, Licciardi PV, Russell FM, Garland SM, Batmunkh T, Mulholland EK. Cervical cancer prevention through HPV vaccination in low- and middle-income countries in Asia. Asian Pacific J Cancer Prev. 2017;18(9):2339–43. doi: 10.22034/APJCP.2017.18.9.2339
DOI: https://doi.org/10.15416/ijcp.2020.9.3.205
Refbacks
- There are currently no refbacks.
Indonesian Journal of Clinical Pharmacy is indexed by