Implikasi Polimorfisme Gen CYP2A6 terhadap Penyakit Kardiovaskular
Abstract
Gen CYP2A6 merupakan penyandi enzim CYP2A6. Gen CYP2A6 diketahui memiliki tingkat polimorfisme yang tinggi sehingga menyebabkan terdapatnya variasi bentuk alel baik dalam bentuk aktif maupun alel inaktif. Adanya variasi bentuk alel ini selanjutnya dapat berakibat pada penurunan, peningkatan atau penghilangan aktivitas enzim CYP2A6 yang disandi oleh gen ini. Salah satu substrat spesifik enzim CYP2A6 adalah nikotin, suatu senyawa aktif terdapat dalam rokok. Nikotin diketahui merupakan salah satu faktor risiko penyakit kardiovasakuler, sehingga kehadiran alel inaktif gen CYP2A6 akan menyebabkan penurunan aktivitas enzim CYP2A6 dalam metabolisme nikotin dan lebih lanjut akan meningkatkan risiko penyakit kardiovaskuler. Tujuan dari artikel review ini yaitu untuk mengevaluasi implikasi polimorfisme gen CYP2A6 terhadap penyakit kardiovaskular. Database yang digunakan pada artikel review ini berasal dari PubMed dan Google Scholar yang kemudian dilakukan seleksi dengan menggunakan kriteria inklusi dan eksklusi. Hasil yang diperoleh yaitu terdapat pengaruh polimorfisme gen CYP2A6 terhadap kandungan nikotin dalam darah terutama pada individu dengan gen CYP2A6 yang memiliki aktivitas metabolisme yang lambat atau buruk yang mengakibatkan kadar nikotin dalam darah yang tinggi, yang kemudian mengakibatkan peningkatan pengaktifan sistem saraf simpatis, lipolisis, dan resistensi insulin yang menyebabkan peningkatan kejadian anterosklerosis. Disimpulkan bahwa polimorfisme gen CYP2A6 akan meningkatkan penyakit kardiovaskuler terutama pada perokok, baik aktif maupun pasif.
Kata kunci: Atherosklerosis, CYP2A6, penyakit kardiovasuler, polimorfisme
The Effects of CYP2A6 Gene Polymorphism on Cardiovascular Diseases
Abstract
The CYP2A6 gene encodes its enzymes and is highly polymorphic, leading to variations in allele forms, both in the active and inactive states. These changes result in a decrease, increase or deletion of enzyme activities. One of the specific substrates is nicotine, an active compound in cigarettes. Nicotine is a major risk factor for cardiovascular diseases, and the inactive alleles tends to decrease its metabolism and expands the threat to infections. Therefore, this study aims to evaluate the effects of CYP2A6gene polymorphism on cardiovascular diseases. Relevant literatures were obtained using PubMed and Google Scholar, while the eventual selection followed the inclusion and exclusion criteria. Based on this review, the CYP2A6 gene polymorphism, both in increased, decreased or deleted alleles, was known to significantly influence nicotine metabolism and its blood levels. Species categorized as slow or poor metabolizers, tend to decrease the nicotine metabolism, but result in greater nicotine blood levels. This outcome subsequently accelerated the activation of the sympathetic nervous system, lipolysis, and insulin resistance, to trigger atherosclerosis. In summary, CYP2A6 gene polymorphism is known to increase cardiovascular diseases, particularly among active or passive smokers.
Keywords: Atherosclerosis, cardiovascular disease, CYP2A6, polymorphism
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852–66. doi: 10.1161/CIRCRESAHA.114.302721
Yusof W, Gan SH. High prevalence of CYP2A6*4 and CYP2A6*9 alleles detected among a Malaysian population. Clin Chim Acta. 2009;403(1–2):105–9. doi: 10.1016/j.cca.2009.01.032
Rigotti NA, Clair C. Managing tobacco use: The neglected cardiovascular disease risk factor. Eur Heart J. 2013;34(42):3259–67. doi: 10.1093/eurheartj/eht352
World Health Organization. Indonesia [diunduh 12 Oktober 2020]. Tersedia dari: https://www.who.int/nmh/countries/idn_ n.pdf.
Zhu J, Nelson K, Toth J, Muscat JE. Nicotine dependence as an independent risk factor for atherosclerosis in the National Lung Screening Trial. BMC Public Health. 2019;19(1):103. doi: 10.1186/s12889-019-6419-8
Kolovou GD, Kolovou V, Mavrogeni S. Cigarette smoking/cessation and metabolic syndrome. Clin Lipidol. 2016;11(1):6–14. doi: 10.1080/17584299.2016.1228285
World Health Organization. Tobacco [diunduh 20 Oktober 2020]. Tersedia dari: https://www.who.int/en/news-room/fact- sheets/detail/tobacco.
Kementerian Kesehatan Republik Indonesia. Riset kesehatan dasar 2018 [diunduh 12 Oktober 2020]. Tersedia dari: https://kesmas.kemkes.go.id/assets/upload/dir_519d41d8cd98f00/files/Hasil-ris kesdas-2018_1274.pdf.
Breitling L. Related cardiovascular disease genetic determination of nicotine dependence. Arter Thromb Vasc Biol. 2013;33:1468–72. doi: 10.1161/ATVBA HA.112.300157
D’Alessandro A, Boeckelmann I, , Hammwhöner M, Goette A. Nicotine, cigarette smoking and cardiac arrhythmia: An overview. Eur J Prev Cardiol. 2012;19(3):297–305. doi: 10.1177/1741826711411738
Benowitz NL. Smokeless tobacco as a nicotine delivery device: Harm or harm reduction?. Clin Pharmacol Ther. 2011;90(4):491–3. doi: 10.1177/1741826711411738
Mishra A, Chaturvedi P, Datta S, Sinukumar S, Joshi P, Garg A. Harmful effects of nicotine. Indian J Med Paediatr Oncol. 2015;36(1):24–31. doi: 10.4103/0971-5851.151771
Benowitz NL, Burbank AD. Cardiovascular toxicity of nicotine: Implications for electronic cigarette use. Trends Cardiovasc Med. 2016;26(6):515–23. doi: 10.1016/j.tcm.2016.03.001
Bajaj M. Nicotine and insulin resistance: When the smoke clears. Diabetes. 2012;61(2):3078–80. doi: 10.2337/db12-1100
Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical update: Cardiovascular disease in diabetes mellitus. Circulation. 2016;133(24):2459–502. doi: 10.1161/CIRCULATIONAHA.116.022194.
Di Y, Chow VDW, Yang L-P, Zhou S-F. Structure, function, regulation and polymorphism of human cytochrome P450 2A6. Curr Drug Metab. 2009;10(7):754–80. doi: 10.2174/13892000978989550
Raunio H, Rahnasto-Rilla M. CYP2A6: Genetics, structure, regulation, and function. Drug Metabol Drug Interact. 2012;27(2):88–73. doi: 10.1515/dmdi-2012-0001
Patramurti C, Fenty. Genetic polymorphism of cytochrome P450 2A6 allele *4 and *9: Study on glycohemoglobine level among Javanese Indonesian smokers. Pharm Sci Res. 2019;6(2):82–8. doi: 10.7454/psr.v6i2.4488
NCBI. CYP2A6 cytochrome P450 family 2 subfamily A member 6 (Homo sapiens (human)) [diunduh 20 Oktober 2020]. Tersedia dari: https://www.ncbi.nlm.nih.gov/gene/1548.
Inui N. CYP2A6 (cytochrome P450, family 2, subfamily A, polypeptide 6). Atlas Genet Cytogenet Oncol Haematol. 2011;14(9):875–7. doi: 10.4267/2042/44849
Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther. 2013;138(1):103–41. doi: 10.1016/j.pharmthera.2012.12.007
López-Flores LA, Pérez-Rubio G, Falfán-Valencia R. Distribution of polymorphic variants of CYP2A6 and their involvement in nicotine addiction. EXCLI J. 2017;16:174–96. doi: 10.17179/excli2016-847
Pharmvar. CYP2A6 allele nomenclature [diunduh 05 Oktober 2020]. Tersedia dari: https://www.pharmvar.org/gene/CYP2A6
Benowitz, L N, Helen G, Dempsey D, Jacob P, Tyndale R. Disposition kinetics and metabolism of nicotine and cotinine in African American smokers: Impact of CYP2A6 genetic variation and enzymatic activity. Pharmacogenet Genomics. 2016; 26(7):340–50. doi: 10.1097/FPC.0000000000000222
Hukkanen J, Iii P, Benowitz N. Metabolism and disposition kinetics of nicotine. Pharmacol Ther. 2005;57(1):79–115. doi: 10.1124/pr.57.1.3
Frostegård J. Immunity, atherosclerosis and cardiovascular disease. BMC Med. 2013;11:117.
Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res. 2016;118(4):535–46. doi: 10.1161/CIRCRESAHA.115.307611
Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317–25. doi: 10.1038/nature10146
Papathanasiou G, Mamali A, Papafloratos S, Zerva E. Effects of smoking on cardiovascular function: The role of nicotine and carbon monoxide. Heal Sci J. 2014;8(2):272–88.
Banks E, Joshy G, Korda RJ, Stavreski B, Soga K, Egger S, et al. Tobacco smoking and risk of 36 cardiovascular disease subtypes: Fatal and non-fatal outcomes in a large prospective Australian study. BMC Med. 2019;17(1):128. doi: 10.1186/s12916-019-1351-4
Afriyanti R, Pangemanan J, Palar S. Hubungan antara perilaku merokok dengan kejadian penyakit jantung koroner. e-CliniC. 2015;3(1):98–102. doi: 10.35790/ecl.v3i1.6747
Setyanda YOG, Sulastri D, Lestari Y. Hubungan merokok dengan kejadian hipertensi pada laki-laki usia 35-65 tahun di Kota Padang. J Kesehat Andalas. 2015;4(2):434–40. doi: 10.25077/jka.v4i2.268
Benowitz NL, Fraiman JB. Cardiovascular effects of electronic cigarettes. Nat Rev Cardiol. 2017;14(8):447–456. doi: 10.1038/nrcardio.2017.36
Bergman BC, Perreault L, Hunerdosse D, Kerege A, Playdon M, Samek AM, et al. Novel and reversible mechanisms of smoking-induced insulin resistance in humans. Diabetes. 2012;61(12):3156–66. doi: 10.2337/db12-0418
Briffa T, Winnall WR, GreenhalghEM, Winstanley MH. Smoking and cardiovascular disease. In Greenhalgh, EM, Scollo, MM and Winstanley, MH [editors]. Tobacco in Australia: Facts and issues. Melbourne: Cancer Council Victoria; 2021.
Colombo ES, Davis J, Makvandi M, Aragon M, Lucas SN, Paffett ML, et al. Effects of nicotine on cardiovascular remodeling in a mouse model of systemic hypertension. Cardiovasc Toxicol. 2013; 13(4):364–9. doi: 10.1007/s12012-013-9217-z
D’Amario D, Migliaro S, Borovac JA, Vergallo R, Galli M, Restivo A, et al. Electronic cigarettes and cardiovascular risk: Caution waiting for evidence. Eur Cardiol. 2019;14(3):151–8. doi: 10.15420/ecr.2019.16.2
Gallucci G, Tartarone A, Lerose R, Lalinga AV, Capobianco AM. Cardiovascular risk of smoking and benefits of smoking cessation. J Thorac Dis. 2020;12(7):3866 –76. doi: 10.21037/jtd.2020.02.47
Hu N, Ren J. Nicotine, cigarette smoking and cardiac function: An update. Toxicol Res. 2014;3(1):7–10. doi: 10.1039/c3tx50044f
Keto J, Ventola H, Jokelainen J, Linden K, Keinänen-kiukaanniemi S, Timonen M, et al. Cardiovascular disease risk factors in relation to smoking behaviour and history: A population-based cohort study. BMJ. 2016;3(2):1–9. doi: 10.1136/openhrt-2015-000358
Kondo T, Nakano Y, Adachi S, Murohara T. Effects of tobacco smoking on cardiovascular disease. Circ J. 2019;83(10):1980–5. doi: 10.1253/circj.CJ-19-0323
Middlekauff HR, Park J, Moheimani RS. Adverse effects of cigarette and noncigarette smoke exposure on the autonomic nervous system. J Am Coll Cardiol. 2014;64(16):1740–50. doi: 10.1016/j.jacc.2014.06.1201
Raghu B, Venkatesan P. Relationship between cigarette smoking and novel risk factors for cardiovascular disease. J Biomed Sci. 2012;1(4):1–4.
Salahuddin S, Prabhakaran D, Roy A. Pathophysiological mechanisms of tobacco-related CVD. Glob Heart. 2012;7(2):113–20. doi: 10.1016/j.gheart.2012.05.003
Leone A. How and why chemicals from tobacco smoke can induce a rise in blood pressure. World J Pharmacol. 2012;1(1):10. doi: 10.5497/wjp.v1.i1.10
Antoniewicz L, Brynedal A, Hedman L, Lundbäck M, Bosson JA. Acute effects of electronic cigarette inhalation on the vasculature and the conducting airways. Cardiovasc Toxicol. 2019;19(5):441–50. doi: 10.1007/s12012-019-09516-x
Chaumont M, de Becker B, Zaher W, Culié A, Deprez G, Mélot C, et al. Differential effects of e-cigarette on microvascular endothelial function, arterial stiffness and oxidative stress: A randomized crossover trial. Sci Rep. 2018;8(1):10378. doi: 10.1038/s41598-018-28723-0
Hom S, Chen L, Wang T, Ghebrehiwet B, Yin W, Rubenstein DA. Platelet activation, adhesion, inflammation, and aggregation potential are altered in the presence of electronic cigarette extracts of variable nicotine concentrations. Platelets. 2016;27(7):694–702. doi: 10.3109/09537104.2016.1158403
Moheimani RS, Bhetraratana M, Peters KM, Yang BK, Yin F, Gornbein J, et al. Sympathomimetic effects of acute e-cigarette use: Role of nicotine and non-nicotine constituents. J Am Heart Assoc. 2017;6(9):e006579. doi: 10.1161/JAHA.117.006579
Vlachopoulos C, Ioakeimidis N, Abdelrasoul M, Terentes-Printzios D, Georgakopoulos C, Pietri P, et al. Electronic cigarette smoking increases aortic stiffness and blood pressure in young smokers. J Am Coll Cardiol. 2016;67(23):2802–3. doi: 10.1016/j.jacc.2016.03.569
Messner B, Bernhard D. Smoking and cardiovascular disease: Mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol. 2014;34(3):509–15. doi: 10.1161/ATVBAHA.113.300156
Lee J-E, Cooke JP. The role of nicotine in the pathogenesis of atherosclerosis. Atherosclerosis. 2011;215(2):281–3. doi: 10.1016/j.atherosclerosis.2011.01.003
Santanam N, Thornhill BA, Lau JK, Crabtree CM, Cook CR, Brown KC, et al. Nicotinic acetylcholine receptor signaling in atherogenesis. Atherosclerosis. 2012;225(2):264–73.
Barua RS, Ambrose JA. Mechanisms of coronary thrombosis in cigarette smoke exposure. Arterioscler Thromb Vasc Biol. 2013;33(7):1460–7. doi: 10.1161/ATVB AHA.112.300154
Elfaki I, Mir R, Almutairi FM, Abu Duhier FM. Cytochrome P450: Polymorphisms and roles in cancer, diabetes and atherosclerosis. Asian Pacific J Cancer Prev. 2018;19(8):2057–70. doi: 10.22034/APJCP.2018.19.8.2057
Al Koudsi N, Hoffmann EB, Assadzadeh A, Tyndale RF. Hepatic CYP2A6 levels and nicotine metabolism: Impact of genetic, physiological, environmental, and epigenetic factors. Eur J Clin Pharmacol. 2010;66(3):239–51. doi: 10.1007/s00228-009-0762-0
Nakajima M, Yokoi T. Interindividual variability in nicotine metabolism: C-oxidation and glucuronidation. Drug Metab Pharmacokinet. 2005;20(4):227–35. doi: 10.2133/dmpk.20.227
Tanner AJ, Henderson AJ, Buchwald D, Howard BV, Henderson PN, Tyndale, RF. Variation in CYP2A6 and nicotine metabolism among two American Indian tribal groups differing in smoking patterns and risk for tobacco-related cancer. Pharmacogenet Genomics. 2017;27(5):169 –78. doi: 10.1097/FPC.0000000000000271
DOI: https://doi.org/10.15416/ijcp.2021.10.3.217
Refbacks
- There are currently no refbacks.
Indonesian Journal of Clinical Pharmacy is indexed by