Efek Polimorfisme Gen Enzim Pemetabolisme Obat terhadap Kadar Rivaroxaban: Sebuah Kajian Naratif
Abstract
Rivaroxaban merupakan agen antikoagulan yang mengalami biotransformasi via liver dengan melibatkan peran dari CYP3A4/5 (18%); CYP2J2 (14%) dan sisanya melalui CYP independent hydrolytic cleavage (14%). Polimorfisme yang terjadi pada gen pemetabolisme obat memengaruhi kadar rivaroxaban di dalam tubuh, hal tersebut telah dilaporkan di dalam berbagai macam penelitian. Kajian naratif ini bertujuan untuk mengulas mengenai pengaruh variasi gen enzim pemetabolisme obat pada kadar rivaroxaban di dalam tubuh pasien dari beberapa penelitian yang sudah dilaporkan. Metode yang digunakan adalah kajian naratif dengan cara menelusuri data berbasis Google Scholar dengan kata kunci rivaroxaban, polymorphism, CYP3A4, CYP3A5, dan CYP2J2. Beberapa penelitian menunjukan bahwa polimorfisme gen pemetabolisme tidak memberikan pengaruh yang signifikan terhadap perubahan kadar rivaroxaban di dalam darah, namun masih terdapat beberapa keterbatasan penelitian. Perlu adanya penelitian yang lebih komprehensif dengan melibatkan keseluruhan single nucleotide polymorphism (SNP) yang berperan dalam farmakokinetika rivaroxaban, mengingat rivaroxaban dimetabolisme oleh beberapa isoenzim CYP dan diekskersikan oleh beberapa transporter, sehingga hal tersebut masih membuka kesempatan untuk penelitian lebih lanjut mengenai farmakogenomik rivaroxaban.
Kata kunci: CYP3A4, CYP3A5, CYP2J2, polimorfisme, rivaroxaban
Effect of Gene Polymorphism in Drug-metabolizing Enzyme on Concentration of Rivaroxaban: A Narrative Review
Abstract
Rivaroxaban is an anticoagulant agent that often experience biotransformation in the liver through CYP3A4/5 (18%); CYP2J2 (14%) and CYP independent hydrolytic cleavage (14%). Several studies revealed that Polymorphism in drug-metabolizing enzyme genes can affect the rivaroxaban levels in the body. Therefore, this study aims to review the effect of gene variations of metabolizing enzymes on rivaroxaban concentration in patient’s body. A search using keyword rivaroxaban, polymorphism, CYP3A4, CYP3A5 and CYP2J2 was carried out in Google Scholar. Several studies showed that polymorphisms of metabolizing genes do not have a significant effect on rivaroxaban concentration. There is also a need for comprehensive studies involving all single nucleotide polymorphisms (SNPs) that play a role in the drug’s pharmacokinetics. This is because rivaroxaban is metabolized by several CYP isoenzymes and excreted by different transporters. This still opens the opportunity for further studies on its pharmacogenomic.
Keywords: CYP3A4, CYP3A5, CYP2J2, polymorphism, rivaroxaban
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Mueck W, Stampfuss J, Kubitza D, Becka M. Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin Pharmacokinet. 2014;53(1):1–16. doi: 10.1007/s40262-013-0100-7
Raymond J, Imbert L, Cousin T, Duflot T, Varin R, Wils J, et al. Pharmacogenetics of direct oral anticoagulants: A systematic review. J Pers Med. 2021;11(1):37. doi: 10.3390/jpm1101003
Ageno W, Gallus AS, Wittkowsky A, Crowther M, Hylek EM, Palareti G. Oral anticoagulant therapy: Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141(2):e44S–88S. doi: 10.1378/chest.11-2292
Syari W, Nadjib M, Ranuhardy D. Evaluasi ekonomi parsial antara pemberian terapi rivaroxaban dan terapi kombinasi (unfractionated heparin + warfarin) untuk pengobatan trombosis vena dalam pada pasien kanker di Rumah Sakit Kanker Dharmais. J Ekon Kesehat Indones. 2020;5(1):1–11. doi: 10.7454/eki.v5i1.3773
Dwiprahasto I, Kristin E, Endarti D, Pinzon RT, Yasmina A, Thobari JA, et al. Cost effectiveness analysis of rivaroxaban compared to warfarin and aspirin for stroke prevention atrial fibrillation (SPAF) in the Indonesian healthcare setting. Indones J Pharm. 2019;30(1):74–84. doi: 10.14499/indonesianjpharm30iss1pp74
Sychev DA, Minnigulov RM, Ryzhikova KA, Yudina IY, Lychagin AV, Morozova TE. Evaluation of the rivaroxaban-influenced effect of ABCB1 and CYP3A5 gene polymorphisms on prothrombin time in patients after total hip or knee replacement surgery. Bull Russ State Med Univ. 2018;7(5):105–9. doi: 10.24075/brsmu.2018.068
Sychev D, Minnigulov R, Bochkov P, Ryzhikova K, Yudina I, Lychagin A, et al. Effect of CYP3A4, CYP3A5, ABCB1 gene polymorphisms on rivaroxaban pharmacokinetics in patients undergoing total hip and knee replacement surgery. High Blood Press Cardiovasc Prev. 2019;26(5):413–20. doi: 10.1007/s40292-019-00342-4
Nakagawa J, Kinjo T, Iizuka M, Ueno K, Tomita H, Niioka T. Impact of gene polymorphisms in drug-metabolizing enzymes and transporters on trough concentrations of rivaroxaban in patients with atrial fibrillation. Basic Clin Pharmacol Toxicol. 2021;128(2):297–304. doi: 10.1111/bcpt.13488
Sutrisna E, Dwiprahasto I, Kristin E. CYP3A4* 1G gene polymorphism on Javanese people. Indones J Biotechnol. 2011;16(2):83–7. doi: 10.22146/ijbiotech.16373
Zhang W, Chang YZ, Kan QC, Zhang LR, Li ZS, Lu H, et al. CYP3A4*1G genetic polymorphism influences CYP3A activity and response to fentanyl in Chinese gynecologic patients. Eur J Clin Pharmacol. 2010;66(1):61–6. doi: 10.1007/s00228-009-0726-4
Dorji PW, Tshering G, Na-Bangchang K. CYP2C9, CYP2C19, CYP2D6 and CYP3A5 polymorphisms in South-East and East Asian populations: A systematic review. J Clin Pharm Ther. 2019;44(4):508–24. doi: 10.1111/jcpt.12835
Perzborn E, Roehrig S, Straub A, Kubitza D, Mueck W, Laux V. Rivaroxaban: A new oral factor xa inhibitor. Arterioscler Thromb Vasc Biol. 2010;30(3):376–81. doi: 10.1161/ATVBAHA.110.202978
Shnayder N, Petrova M, Bochanova E, Zimnitskaya O, Savinova A, Pozhilenkova E, et al. Pharmacogenetics of direct oral anticoagulants. IntechOpen. 2013;32(July):137–44. doi: 10.5772/intechopen.95966
Bratsos S. Pharmacokinetic properties of rivaroxaban in healthy human subjects. Cureus. 2019;11(8):e5484. doi: 10.7759/cureus.5484
Sychev DA, Vardanyan A, Rozhkov A, Hachatryan E, Badanyan A, Smirnov V, et al. CYP3A activity and rivaroxaban serum concentrations in Russian patients with deep vein thrombosis. Genet Test Mol Biomarkers. 2018;22(1):51–4. doi: 10.1089/gtmb.2017.0152
Tornio A, Backman JT. Cytochrome P450 in Pharmacogenetics: An update. Adv Pharmacol. 2018;83:3–32. doi: 10.1016/bs.apha.2018.04.007
Elens L, van Gelder T, Hesselink DA, Haufroid V, van Schaik R. CYP3A4*22: Promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics. 2013;14(1):47–62. doi: 10.2217/pgs.12.187
Zhou LP, Yao F, Luan H, Wang YL, Dong XH, Zhou WW, et al. CYP3A4*1B polymorphism and cancer risk: A HuGE review and meta-analysis. Tumour Biol. 2013;34(2):649–60. doi: 10.1007/s13277 -012-0592-z
Saiz-Rodríguez M, Almenara S, Navares-Gómez M, Ochoa D, Román M, Zubiaur P, et al. Effect of the most relevant CYP3A4 and CYP3A5 polymorphisms on the pharmacokinetic parameters of 10 CYP3A substrates. Biomedicines. 2020;8(4):94. doi: 10.3390/biomedicines8040094
Apellániz-Ruiz M, Inglada-Pérez L, Naranjo MEG, Sánchez L, Mancikova V, Currás-Freixes M, et al. High frequency and founder effect of the CYP3A4*20 loss-of-function allele in the Spanish population classifies CYP3A4 as a polymorphic enzyme. Pharmacogenomics J. 2015;15(3):288–92. doi: 10.1038/tpj.2014.67
Badan Pusat Statistik. SP 2010 BPS [Diakses pada: 29 Januari 2021]. Tersedia dari: www.bps.go.id
Lamba J, Hebert JM, Schietz EG, Klein TE, Altman RB. PharmGKB summary: Very important pharmacogene information for MT-RNR1. Pharmacogenet Genomics. 2016;26(12):558–67. doi: 10.1097/FPC.0000000000000247
Zhou Y, Ingelman-Sundberg M, Lauschke VM. Worldwide distribution of cytochrome P450 alleles: A meta-analysis of population-scale sequencing projects. Clin Pharmacol Ther. 2017;102(4):688–700. doi: 10.1002/cpt.690
Berlin DS, Sangkuhl K, Klein TE, Altman RB. PharmGKB summary: Cytochrome P450, family 2, subfamily J, polypeptide 2: CYP2J2. Pharmacogenet Genomics. 2011;21(5):308–11. doi: 10.1097/FPC.0b013e32833d1011
Murray M. CYP2J2–Regulation, function and polymorphism. Drug Metab Rev. 2016;48(3):351–68. doi: 10.1080/036025 32.2016.1188938
Zhao T, Chen Y, Wang D, Wang L, Dong P, Zhao S, et al. Identifying the dominant contribution of human cytochrome P450 2J2 to the metabolism of rivaroxaban, an oral anticoagulant. Cardiovasc Drugs Ther. 2022;36(1):121–9. doi: 10.1007/s10557-020-07129-z
Gong IY, Mansell SE, Kim RB. Absence of both MDR1 (ABCB1) and breast cancer resistance protein (ABCG2) transporters significantly alters rivaroxaban disposition and central nervous system entry. Basic Clin Pharmacol Toxicol. 2013;112(3):164–70. doi: 10.1111/bcpt.12005
Kobayashi D, Ieri I, Hirota T, Takane H, Maegawa S, Kigawa J, et al. Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta. Drug Metab Dispos. 2005;33(1):94–101. doi: 10.1124/dmd.104.001628
Lorenzini KI, Daali Y, Fontana P, Desmeules J, Samer C. Rivaroxaban-induced hemorrhage associated with ABCB1 genetic defect. Front Pharmacol. 2016;7:494. doi: 10.3389/fphar.2016.00494
Gouin-Thibault I, Delavenne X, Blanchard A, Siguret V, Salem JE, Narjoz C, et al. Interindividual variability in dabigatran and rivaroxaban exposure: Contribution of ABCB1 genetic polymorphisms and interaction with clarithromycin. J Thromb Haemost. 2017;15(2):273–83. doi: 10.1111/jth.13577
Gnoth MJ, Buetehorn U, Muenster U, Schwarz T, Sandmann S. In vitro and in vivo p-glycoprotein transport characteristics of rivaroxaban. J Pharmacol Exp Ther. 2011;338(1):372–80. doi: 10.1124/jpet.111.180240
DOI: https://doi.org/10.15416/ijcp.2022.11.2.164
Refbacks
- There are currently no refbacks.
Indonesian Journal of Clinical Pharmacy is indexed by