Isolat Senyawa dari Spons Laut: Sitotoksisitas terhadap Lini Sel Kanker dan Mekanisme Kematian Sel
Abstract
Peningkatan angka kematian akibat kanker menyebabkan berkembangnya penelitian mengenai obat antikanker, terutama penelitian terhadap senyawa penuntun (lead compound) yang diisolasi dari bahan alam. Struktur yang unik disertai dengan kombinasi baru kelompok fungsional dan aktivitas biologis spesifik menyebabkan metabolit yang diisolasi dari spons laut menarik untuk diteliti potensinya sebagai antikanker. Dari berbagai senyawa yang telah diisolasi dari spons laut, diketahui dua diantaranya telah disetujui sebagai obat anti-kanker. Artikel ini membahas keterlibatan berbagai senyawa yang diisolasi dari spons laut terhadap mekanisme kematian sel dan potensinya untuk dikembangkan sebagai antikanker. Sebanyak 14 senyawa, yaitu gukulenin A, aaptamin, halikondramida, skalaradial, kakospongionolida, monanchocidin A, monanchocidin B, monanchoxymycalin C, N6-isopentenyladenosine, (Z)-5-(4-hydroxybenzylidene)-imidazolidine-2,4-dione, stellettin B, sipholenol A, sipholenol L, dan heteronemin, dibahas pada artikel ini serta potensinya sitotoksistasnya terhadap berbagai lini sel kanker dan mekanisme spesifiknya. Pencarian data ilmiah yang digunakan pada artikel review ini dilakukan dengan kata kunci “cancer cell line,” “cytotoxicity,” “marine sponges,” serta “anticancer mechanism,” dan berhasil didapatkan 13 artikel hasil penelusuran secara spesifik menunjukkan potensi sitotoksistas terhadap lini sel kanker senyawa yang diisolasi dari spons laut. Studi in vitro ini menunjukkan bahwa senyawa-senyawa yang dibahas pada review ini memiliki potensi untuk memicu kematian sel melalui berbagai mekanisme, yaitu induksi protein proapoptosis, penghambatan protein antiapoptosis, penghentian siklus sel, inhibisi NF-kB, penekanan metastasis, serta berbagai mekanisme lainnya. Artikel review ini diharapkan dapat menjadi rujukan penelitian lanjutan mengenai potensi sitotoksisitas senyawa yang diisolasi dari spons laut dan pengembangannya sebagai senyawa penuntun antikanker melalui eksplorasi mekanisme spesifik dan modifikasi struktur turunannya.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
World Health Organization. Guide to Cancer - Guide to cancer early diagnosis [Internet]. World Health Organization. 2017. 48 p. Available from: https://apps.who.int/iris/bitstream/handle/10665/254500/9789241511940-eng.pdf;jsessionid=2646A3E30075DB0FCA4A703A481A5494?sequence=1
Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog. 2013;18(1–2):43–73.
Nagai H, Kim YH. Cancer prevention from the perspective of global cancer burden patterns. J Thorac Dis. 2017;9(3):448–51.
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
Kemenkes RI. (2018). Hasil Utama Riskesdas 2018. Jakarta: Kemenkes.
Sahid A, Pandiangan D, Siahaan P, Rumondor MJ. Cytootoxicity Test of Dragon Scale Leaf Methanol Extract (Drymoglossum piloselloides Presl.) against Leukemia Cell P388. J MIPA. 2013;2(2):94.
Housman G, Byler S, Heerboth S, Lapinska K, Longacre M, Snyder N, et al. Drug resistance in cancer: An overview. Cancers (Basel). 2014;6(3):1769–92.
Kurniasih N, Milawati H, Fajar M, Abdulah R, Huspa DHP, Unang S. Cytotoxic Test of Aglaia minahassae and Aglaia simplicifolia Against HeLa Cervical Cancer Cells. Indones J Pharm Sci Technol [Internet]. 2018;1(1):1–6. Available from: http://jurnal.unpad.ac.id/ijpst/
Aung TN, Qu Z, Kortschak RD, Adelson DL. Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action. Int J Mol Sci. 2017;18(3).
Greenwell, M., & Rahman, P. 2. (2015). Medicinal Plants: Their Use in Anticancer Treatment. Int. J. Pharm. Sci. Res., 5, 4103–4112.
Fridlender, M., Kapulnik, Y., & Koltai, H. P.-c. (2015). Plant derived substances with anti-cancer activity: From folklore to practice. Plant Sci., 6, 1–9.
Marzuki I. Indonesian Sponge Exploration : Around Spermonde Islands. Makasar: Nas Media Pustaka; 2018.
Rohde S, Nietzer S, Schupp PJ. Prevalence and mechanisms of dynamic chemical defenses in tropical sponges. PLoS One. 2015;10(7):1–19.
Ivanisevic J, Thomas OP, Pedel L, Pénez N, Ereskovsky A V., Culioli G, et al. Biochemical trade-offs: Evidence for ecologically linked secondary metabolism of the sponge oscarella balibaloi. PLoS One. 2011;6(11).
Puglisi MP, Sneed JM, Sharp KH, Ritson-Williams R, Paul VJ. Marine chemical ecology in benthic environments. Nat Prod Rep. 2014;31(11):1510–53.
Robinson A, Scully C. Pharmacology: New therapies and challenges. Br Dent J [Internet]. 2014;217(6):258–9. Available from: http://dx.doi.org/10.1038/sj.bdj.2014.811
Puigvert JC, Sanjiv K, Helleday T. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J. 2016;283(2):232–45.
Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 2020;21(9).
Trianto A, Ridhlo A, Triningsih D, Tanaka J. Study on Anticancer Activity of Extracts of Sponges Collected from Biak Water, Indonesia. IOP Conf Ser Environ Sci. 2017;55.
Kumar MS, Adki KM. Marine natural products for multi-targeted cancer treatment: A future insight. Biomed Pharmacother [Internet]. 2018;105(May):233–45. Available from: https://doi.org/10.1016/j.biopha.2018.05.142
Abdel-Lateff A, Al-Abd AM, Alahdal AM, Alarif WM, Ayyad SEN, Al-Lihaibi SS, et al. Antiproliferative effects of triterpenoidal derivatives, obtained from the marine sponge Siphonochalina sp., on human hepatic and colorectal cancer cells. Zeitschrift fur Naturforsch - Sect C J Biosci. 2016;71(1–2):29–35.
Yang F, Hamann MT, Zou Y, Zhang MY, Gong X Bin, Xiao JR, et al. Antimicrobial metabolites from the paracel islands sponge Agelas mauritiana. J Nat Prod. 2012;75(4):774–8.
Pettit GR, Tang Y, Zhang Q, Bourne GT, Arm CA, Leet JE, et al. Isolation and structures of axistatins 1-3 from the Republic of Palau marine sponge Agelas axifera Hentschel(1). J Nat Prod. 2013;76(3):420–4.
Lee Y, Jang KH, Jeon JE, Yang WY, Sim CJ, Oh KB, et al. Cyclic bis-1,3-dialkylpyridiniums from the sponge Haliclona sp. Mar Drugs. 2012;10(9):2126–37.
Kumar R, Subramani R, Feussner KD, Aalbersberg W. Aurantoside K, a new antifungal tetramic acid glycoside from a Fijian marine sponge of the genus Melophlus. Mar Drugs. 2012;10(1):200–8.
Kusama T, Tanaka N, Sakai K, Gonoi T, Fromont J, Kashiwada Y, et al. Agelamadins A and B, dimeric bromopyrrole alkaloids from a marine sponge agelas sp. Org Lett. 2014;16(15):3916–8.
Yu HB, Liu XF, Xu Y, Gan JH, Jiao WH, Shen Y, et al. Woodylides A-C, new cytotoxic linear polyketides from the South China Sea sponge Plakortis simplex. Mar Drugs. 2012;10(5):1027–36.
Guimarães TDR, Quiroz CG, Rigotto C, De Oliveira SQ, De Almeida MTR, Bianco ÉM, et al. Anti HSV-1 activity of halistanol sulfate and halistanol sulfate C isolated from Brazilian marine sponge Petromica citrina (Demospongiae). Mar Drugs. 2013;11(11):4176–92.
Salam KA, Furuta A, Noda N, Tsuneda S, Sekiguchi Y, Yamashita A, et al. Inhibition of hepatitis C virus NS3 helicase by manoalide. J Nat Prod. 2012;75(4):650–4.
Yamano Y, Arai M, Kobayashi M. Neamphamide B, new cyclic depsipeptide, as an anti-dormant mycobacterial substance from a Japanese marine sponge of Neamphius sp. Bioorganic Med Chem Lett [Internet]. 2012;22(14):4877–81. Available from: http://dx.doi.org/10.1016/j.bmcl.2012.05.071
Liu J, Zhao D, He W, Zhang H, Li Z, Luan Y. Nanoassemblies from amphiphilic cytarabine prodrug for leukemia targeted therapy. J Colloid Interface Sci [Internet]. 2017;487:239–49. Available from: http://dx.doi.org/10.1016/j.jcis.2016.10.041
Ahn JH, Woo JH, Rho JR, Choi JH. Anticancer activity of gukulenin a isolated from the marine sponge phorbas gukhulensis in vitro and in vivo. Mar Drugs. 2019;17(2).
Zhang JM, Wang HC, Wang HX, Ruan LH, Zhang YM, Li JT, et al. Oxidative stress and activities of caspase-8, -9, and -3 are involved in cryopreservation-induced apoptosis in granulosa cells. Eur J Obstet Gynecol Reprod Biol [Internet]. 2013;166(1):52–5. Available from: http://dx.doi.org/10.1016/j.ejogrb.2012.09.011
Parrish AB, Freel CD, Kornbluth S. Activation and Function. Cold Spring Harb Perspect Biol [Internet]. 2013;5(6):a008672. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23732469%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3660825
Li Q, Zhang P, Wang P, Yu H, Sun F, Hu W, et al. The Cytotoxic and Mechanistic Effects of Aaptamine on Hepatocellular Carcinoma. Anticancer Agents Med Chem. 2015;15(3):291–7.
Kawai T, Yasuchika K, Ishii T, Miyauchi Y, Kojima H, Yamaoka R, et al. SOX9 is a novel cancer stem cell marker surrogated by osteopontin in human hepatocellular carcinoma. Sci Rep. 2016;6(July):1–11.
Xue TC, Zhang L, Ren ZG, Chen RX, Cui JF, Ge NL, et al. Sex-Determination Gene SRY Potentially Associates with Poor Prognosis but Not Sex Bias in Hepatocellular Carcinoma. Dig Dis Sci. 2015;60(2):427–35.
Richtig G, Aigelsreiter A, Schwarzenbacher D, Ress AL, Adiprasito JB, Stiegelbauer V, et al. SOX9 is a proliferation and stem cell factor in hepatocellular carcinoma and possess widespread prognostic significance in different cancer types. PLoS One. 2017;12(11):1–15.
Stöckl S, Bauer RJ, Bosserhoff AK, Göttl C, Grifka J, Grässel S. Sox9 modulates cell survival and adipogenic differentiation of multipotent adult rat mesenchymal stem cells. J Cell Sci. 2013;126(13):2890–902.
Bačević K, Lossaint G, Achour TN, Georget V, Fisher D, Dulić V. Cdk2 strengthens the intra-S checkpoint and counteracts cell cycle exit induced by DNA damage. Sci Rep. 2017;7(1):1–14.
Dyshlovoy SA, Fedorov SN, Shubina LK, Kuzmich AS, Bokemeyer C, Keller-Von Amsberg G, et al. Aaptamines from the marine sponge Aaptos sp. display anticancer activities in human cancer cell lines and modulate AP-1-, NF- B-, and p53-dependent transcriptional activity in mouse JB6 Cl41 cells. Biomed Res Int. 2014;2014(Figure 1).
Shin Y, Kim GD, Jeon JE, Shin J, Lee SK. Antimetastatic effect of halichondramide, a trisoxazole macrolide from the marine sponge chondrosia corticata, on human prostate cancer cells via modulation of epithelial-to-mesenchymal transition. Mar Drugs. 2013;11(7):2472–85.
Csoboz B, Gombos I, Tatrai E, Tovari J, Kiss AL, Horvath I, et al. Chemotherapy induced PRL3 expression promotes cancer growth via plasma membrane remodeling and specific alterations of caveolae-associated signaling. Cell Commun Signal. 2018;16(1):1–12.
Bilici A, Ustaalioglu BBO, Yavuzer D, Seker M, Mayadagli A, Gumus M. Prognostic significance of high phosphatase of regenerating liver-3 expression in patients with gastric cancer who underwent curative gastrectomy. Dig Dis Sci. 2012;57(6):1568–75.
Mayinuer A, Yasen M, Mogushi K, Obulhasim G, Xieraili M, Aihara A, et al. Upregulation of protein tyrosine phosphatase type IVA member 3 (PTP4A3/PRL-3) is associated with tumor differentiation and a poor prognosis in human hepatocellular carcinoma. Ann Surg Oncol. 2013;20(1):305–17.
Zhang C, Liu Y. Targeting cancer with sesterterpenoids: The new potential antitumor drugs. J Nat Med [Internet]. 2015;69(3):255–66. Available from: http://dx.doi.org/10.1007/s11418-015-0911-y
De Stefano D, Tommonaro G, Malik SA, Iodice C, de Rosa S, Maiuri MC, et al. Cacospongionolide and scalaradial, two marine sesterterpenoids as potent apoptosis-inducing factors in human carcinoma cell lines. PLoS One. 2012;7(4).
Guzii AG, Makarieva TN, Denisenko VA, Dmitrenok PS, Kuzmich AS, Dyshlovoy SA, et al. Monanchocidin: A new apoptosis-inducing polycyclic guanidine alkaloid from the marine sponge monanchora pulchra. Org Lett. 2010;12(19):4292–5.
Dyshlovoy SA, Tabakmakher KM, Hauschild J, Shchekaleva RK, Otte K, Guzii AG, et al. Guanidine alkaloids from the marine sponge Monanchora pulchra show cytotoxic properties and prevent EGF-induced neoplastic transformation in vitro. Mar Drugs. 2016;14(7):1–17.
Shubina LK, Makarieva TN, von Amsberg G, Denisenko VA, Popov RS, Dyshlovoy SA. Monanchoxymycalin C with anticancer properties, new analogue of crambescidin 800 from the marine sponge Monanchora pulchra. Nat Prod Res [Internet]. 2019;33(10):1415–22. Available from: https://doi.org/10.1080/14786419.2017.1419231
Dyshlovoy SA, Kaune M, Kriegs M, Hauschild J, Busenbender T, Shubina LK, et al. Marine alkaloid monanchoxymycalin C: a new specific activator of JNK1/2 kinase with anticancer properties. Sci Rep [Internet]. 2020;10(1):1–14. Available from: https://doi.org/10.1038/s41598-020-69751-z
Astawa INM. Molecular Pathobiological Basics. Denpasar: Swasta nulus; 2016.
Nakamukai S, Ise Y, Ohtsuka S, Okada S, Matsunaga S. Isolation and identification of N6-isopentenyladenosine as the cytotoxic constituent of a marine sponge Oceanapia sp. Biosci Biotechnol Biochem [Internet]. 2019;83(11):1985–8. Available from: https://doi.org/10.1080/09168451.2019.1630258
Laezza C, Malfitano AM, Di Matola T, Ricchi P, Bifulco M. Involvement of Akt/NF-κB pathway in N6-isopentenyladenosine-induced apoptosis in human breast cancer cells. Mol Carcinog. 2010;49(10):892–901.
Castiglioni S, Romeo V, Casati S, Ottria R, Perrotta C, Ciuffreda P, et al. N6-isopentenyladenosine a new potential anti-angiogenic compound that targets human microvascular endothelial cells in vitro. Nucleosides, Nucleotides and Nucleic Acids [Internet]. 2018;37(10):533–45. Available from: https://doi.org/10.1080/15257770.2018.1503673
Georgakilas AG, Martin OA, Bonner WM. p21: A Two-Faced Genome Guardian. Trends Mol Med [Internet]. 2017;23(4):310–9. Available from: http://dx.doi.org/10.1016/j.molmed.2017.02.001
Youssef DTA, Shaala LA, Alshali KZ. Bioactive hydantoin alkaloids from the Red Sea marine sponge Hemimycale arabica. Mar Drugs. 2015;13(11):6609–19.
Mudit M, Khanfar M, Muralidharan A, Thomas S, Shah G V., van Soest RWM, et al. Discovery, design, and synthesis of anti-metastatic lead phenylmethylene hydantoins inspired by marine natural products. Bioorganic Med Chem [Internet]. 2009;17(4):1731–8. Available from: http://dx.doi.org/10.1016/j.bmc.2008.12.053
Wang R, Zhang Q, Peng X, Zhou C, Zhong Y, Chen X, et al. Stellettin B Induces G1 Arrest, Apoptosis and Autophagy in Human Non-small Cell Lung Cancer A549 Cells via Blocking PI3K/Akt/mTOR Pathway. Sci Rep [Internet]. 2016;6(May):1–10. Available from: http://dx.doi.org/10.1038/srep27071
Tang SA, Zhou Q, Guo WZ, Qiu Y, Wang R, Jin M, et al. In vitro antitumor activity of stellettin B, a triterpene from marine sponge Jaspis stellifera, on human glioblastoma cancer SF295 cells. Mar Drugs. 2014;12(7):4200–13.
Sobahi TRA, Ayyad SEN, Abdel-Lateff A, Algandaby MM, Alorfi HS, Abdel-Naim AB. Cytotoxic metabolites from Callyspongia siphonella display antiproliferative activity by inducing apoptosis in HCT-116 cells. Pharmacogn Mag. 2017;13(49):S37–40.
Wu SY, Sung PJ, Chang YL, Pan SL, Teng CM. Heteronemin, a spongean sesterterpene, induces cell apoptosis and autophagy in human renal carcinoma cells. Biomed Res Int. 2015;2015.
DOI: https://doi.org/10.15416/ijcp.2023.12.2.60970
Refbacks
- There are currently no refbacks.
Indonesian Journal of Clinical Pharmacy is indexed by