Pembuatan granul monetite menggunakan metode hidrotermal sebagai kandidat bone graft kedokteran gigi
Fabrication of monetite granules with the hydrothermal method as a dental bone graft candidate
Abstract
Pendahuluan: Kerusakan tulang yang besar membutuhkan prosedur penambahan bone graft untuk membantu meregenerasi jaringan tulang. Monetite memiliki potensi yang sangat baik sebagai kandidat bone graft kedokteran gigi. Hidrotermal banyak digunakan dalam sintesis bone graft karena dapat mempercepat reaksi. Tujuan penelitian membuat monetite dari granul gipsum sebagai prekursor dengan menggunakan metode hidrotermal sebagai kandidat bone graft kedokteran gigi. Metode: Jenis penelitian ini merupakan eksperimental laboratoris. Granul gipsum dibuat dengan menggerus blok gypsum hasil reaksi setting kalsium sulfat hemihidrat dan aquadest dengan rasio serbuk terhadap liqud sebesar 2,5. Selanjutnya, granul gipsum dikonversi menjadi granul monetite dengan direndam di dalam larutan 2 mol/L NaH2PO4 pada suhu 150oC dalam kondisi hidrotermal selama 24 jam. Hasil: Berdasarkan hasil uji XRD, granul monetite dapat terbentuk. Hasil gambar optik granul monetite secara makroskopik menunjukkan tidak mengalami perubahan dibandingkan dengan granul gipsum. Simpulan: Granul monetite sebagai kandidat bone graft kedokteran gigi berhasil dibuat dengan metode hidrotermal melalui perendaman granul gipsum dalam larutan 2 mol/L NaH2PO4 pada suhu 150oC selama 24 jam.
ABSTRACT
Introduction: Massive bone damage requires a procedure of bone graft addition to helping regenerate the bone tissue. Monetite has excellent potential as a dental bone graft candidate. Hydrothermal is widely used in bone graft synthesis due to its catalyst property. The purpose of this research was to fabricate the monetite from gypsum granules as a precursor with the hydrothermal method as the dental bone graft candidate. Methods: This research was an experimental laboratory. Gypsum granules were made by grinding gypsum blocks resulting from the setting reaction of calcium sulfate hemihydrate and aquadest with a powder to liquid ratio of 2.5. Furthermore, the gypsum granules were converted into monetite granules by immersing them in a solution of 2 mol/L of NaH2PO4 at a temperature of 150°C under hydrothermal conditions for 24 hours. Results: Based on the XRD test results, monetite granules was able to be formed. The results of the macroscopic optical image of the monetite granules showed no change compared to the gypsum granules. Conclusions: Monetite granules as dental bone graft candidate are successfully prepared using the hydrothermal method by immersing gypsum granules in a solution of 2 mol/L of NaH2PO4 at 150oC for 24 hours.
Keywords
Full Text:
PDFReferences
Fernandez de Grado G, Keller L, Idoux-Gillet Y, et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. Journal of tissue engineering 2018;9:2041731418776819.
Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Medicine 2011;9(1):66.
Kumar P, Vinitha B, Fathima G. Bone grafts in dentistry. Journal of pharmacy & bioallied sciences 2013;5(Suppl 1):S125.
Shah A, Saima S, Jan S, Yousuf A, Batra M. Bone grafts and bone substitutes in dentistry. Journal of Oral Research and Review 2016;8(1).
Sankaran S, Naot D, Grey A, Cundy T. Paget's disease in patients of Asian descent in New Zealand. Journal of Bone and Mineral Research 2012;27(1):223-26.
García-Gareta E, Coathup MJ, Blunn GW. Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 2015;81:112-21.
Hoexter DL. Osseous regeneration in compromised extraction sites: a ten-year case study. Journal of Oral Implantology 2002;28(1):19-24.
Thukral H. Alloplastic Bone Grafts; 2018.
Bohner M, Gbureck U, Barralet J. Technological issues for the development of more efficient calcium phosphate bone cements: a critical assessment. Biomaterials 2005;26(33):6423-29.
Allegrini JS, Koening JB, Allegrini M, et al. Alveolar ridge sockets preservation with bone grafting--review. Paper presented at: Annales Academiae Medicae Stetinensis, 2008.
Sohn HS, Oh JK. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res 2019;23:9.
Xidaki D, Agrafioti P, Diomatari D, et al. Synthesis of Hydroxyapatite, beta-Tricalcium Phosphate and Biphasic Calcium Phosphate Particles to Act as Local Delivery Carriers of Curcumin: Loading, Release and In Vitro Studies. Materials (Basel) 2018;11(4).
Ogose A, Hotta T, Kawashima H, et al. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2005;72(1):94-101.
LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. Journal of Materials Science: Materials in Medicine 2003;14(3):201-09.
Garrido CA, Lobo SE, Turibio FM, Legeros RZ. Biphasic calcium phosphate bioceramics for orthopaedic reconstructions: clinical outcomes. Int J Biomater 2011;2011:129727.
Gbureck U, Hölzel T, Klammert U, et al. Resorbable dicalcium phosphate bone substitutes prepared by 3D powder printing. Advanced Functional Materials 2007;17(18):3940-45.
Shi X, Zhao C, Xu L, Wang Q. Preparation of Dicalcium Phosphate Anhydrous (Monetite) Biological Coating on Titanium by Spray-Drying Method. Advances in Materials Science and Engineering 2017;2017:1-7.
Tamimi F, Torres J, Bassett D, Barralet J, Cabarcos EL. Resorption of monetite granules in alveolar bone defects in human patients. Biomaterials 2010;31(10):2762-9.
Torres J, Tamimi I, Cabrejos-Azama J, et al. Monetite granules versus particulate autologous bone in bone regeneration. Ann Anat 2015;200:126-33.
Ishikawa K. Bone Substitute Fabrication Based on Dissolution-Precipitation Reactions. Materials 2010;3(2):1138-55.
Darvell BW. Gypsum Materials. Materials Science for Dentistry; 2018. p. 40-69.
Anusavice KJ, Shen C, Rawls HR. Phillips' science of dental materials: Elsevier Health Sciences; 2012.
Birt MC, Anderson DW, Bruce Toby E, Wang J. Osteomyelitis: Recent advances in pathophysiology and therapeutic strategies. J Orthop 2017;14(1):45-52.
Byrappa K, Yoshimura M. Handbook of hydrothermal technology: William Andrew; 2012.
Bingöl OR, Durucan C. Hydrothermal synthesis of hydroxyapatite from calcium sulfate hemihydrate. Am. J. Biomed. Sci 2012;4(1):50-59.
Le X, Poinern GEJ, Ali N, Berry CM, Fawcett D. Engineering a Biocompatible Scaffold with Either Micrometre or Nanometre Scale Surface Topography for Promoting Protein Adsorption and Cellular Response. International Journal of Biomaterials 2013;2013:782549.
DOI: https://doi.org/10.24198/jkg.v33i2.34406
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Jurnal Kedokteran Gigi Universitas Padjadjaran
INDEXING & PARTNERSHIP
Jurnal Kedokteran Gigi Universitas Padjadjaran dilisensikan di bawah Creative Commons Attribution 4.0 International License