Perbedaan efek pemberian gel kombinasi ekstrak Camellia sinensis dan kitosan terhadap jumlah sel neutrofil pasca ekstraksi gigi tikus Wistar: eksperimental laboratoris

Nyoman Ayu Anggayanti, Eka Pramudita Ramadhany, I Gusti Ayu Putu Diah Suryani

Abstract


Pendahuluan: Neutrofil berperan penting dalam mengatur peradangan selama penyembuhan luka. Camellia sinensis (teh hijau) terbukti mengandung Epigallocatechin Gallate (EGCG) yang memiliki aktivitas anti inflamasi. Kitosan dengan kemampuannya menjaga stabilitas EGCG, berpotensi untuk meningkatkan efektivitas EGCG dalam mengurangi inflamasi. Penelitian ini bertujuan untuk menganalisis perbedaan efek pemberian gel ekstrak Camellia sinensis yang dikombinasikan dengan kitosan terhadap jumlah neutrofil sebagai indikator utama fase inflamasi pada tikus Wistar pasca ekstraksi gigi. Metode: Gigi insisivus mandibula kiri pada tikus diekstraksi setelah dilakukan anestesi. Soket pada kelompok perlakuan diberi gel kombinasi ekstrak Camellia sinensis dan kitosan, sedangkan kelompok kontrol tidak diberikan intervensi. Pemeriksaan histopatologi soket dilakukan untuk menilai keberadaan neutrofil pada hari pertama, ketiga, kelima, dan ketujuh pasca perlakuan. Data yang diperoleh dianalisis menggunakan uji Kruskal-Wallis dan Mann-Whitney berdasarkan karakteristik distribusi. Hasil: Jumlah neutrofil pada kelompok perlakuan mengalami penurunan yang signifikan disetiap hari pengamatan dibandingkan kelompok kontrol yang menunjukan proses penyembuhan yang lebih baik dengan tidak adanya inflamasi persisten (p=0.000, p<0.05). Simpulan: Kombinasi ekstrak Camellia sinensis dan kitosan berefek terhadap penurunan jumlah neutrofil pasca ekstraksi gigi tikus Wistar.


The effect of gel Camellia sinensis extract in combination with chitosan on neutrophils count of Wistar rats after tooth extraction: A Laboratory Experimental Study

Introduction: Neutrophils play a key role in regulating inflammation during wound healing. Camellia sinensis has been proven to contain Epigallocatechin Gallate (EGCG), which exhibits anti-inflammatory activity. Chitosan with its ability to maintain EGCG stability, offers the potential to enhance the effectiveness of EGCG in reducing inflammation. This research aims to analyze the effect of extract gel Camellia sinensis combined with chitosan on the number of neutrophils as the main indicator of the inflammatory phase in Wistar rats after tooth extraction. Methods: The left mandibular incisor was extracted after the rats were anesthetized. The socket in the treatment group was treated with gel combining Camellia sinensis extract and chitosan, while the control group did receive any intervention. A histopathological examination of the socket was conducted to assess the presence of neutrophil on days one, three, five, and seven after treatment. The obtained data were analyzed using Kruskal-Wallis and Mann-Whitney tests based on the distribution characteristics. Results: The number of neutrophils in the treatment group decreased significantly on each day of observation compared to the control group, indicating a more advanced healing process with the absence of persistent inflammation (p=0.000, p<0.05). Conclusion: The combination of Camellia sinensis extract and chitosan had an effect on reducing the number of neutrophils in Wistar rats after tooth extraction.

Keywords


Pencabutan gigi, neutrofil, Camellia sinensis, kitosan

Full Text:

PDF

References


Kementerian Kesehatan Republik Indonesia. Riskesdas 2018. Laporan Nasional Riskesdas 2018. Jakarta: Balitbang Kemenkes RI; 2018. p. 127–30.

Broers DL, Dubois L, de Lange J, Welie JV, Brands WG, Lagas MB, Bruers JJ, de Jongh A. How dentists and oral and maxillofacial surgeons deal with tooth extraction without a valid clinical indication. PloS one. 2023 Jan 17;18(1): e0280288. https://doi. org/10.1371/journal.pone.0280288

Soesilawati P, Rachmat EA, Arundina I, Naomi N. The possibility of polymorphonuclear leukocyte activation in dental socket healing by freeze-dried Aloe vera induction. Dental J. 2021;54(3):124-7. https://doi.org/10.20473/j.djmkg.v54.i3.p124–127

Ahmed Z, Vadane AK. Difficult Extraction of Post-Endodontically Treated Upper Second molar: A Case Report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2017;106(5):e31-5. https://doi.org/10.26717/BJSTR.2017.01.000485

Kurniawati A, Kristanti YD, Rahmat NA, Rahayu YC, Cholid Z, Sosiawan A. The role of purple leaves extract (Graptophyllum Pictum (L.) Griff) on the number of fibroblasts and blood vessels in the socket after tooth extraction. Dent J. 2024;57(1):56–61. https://doi.org/10.20473/j.djmkg.v57.i1.p56–61

Deliverska EG, Petkova M. Complications after extraction of impacted third molars-literature review. J of IMAB–Annual Proceeding Scientific Papers. 2016 Jul 4;22(3):1202-11. http://dx.doi.org/10.5272/jimab.2016223.1202

Greenlee‐Wacker MC. Clearance of apoptotic neutrophils and resolution of inflammation. Immunological reviews. 2016 Sep;273(1):357-70. DOI: Greenlee‐Wacker MC. Clearance of apoptotic neutrophils and resolution of inflammation. Immunological reviews. 2016 Sep;273(1):357-70. https://doi.org/10.1111/imr.12453

Shofler D, Rai V, Mansager S, Cramer K, Agrawal DK. Impact of resolvin mediators in the immunopathology of diabetes and wound healing. Expert review of clinical immunology. 2021 Jun 3;17(6):681-90 https://doi.org/10.1080/1744666X.2021.1912598

Hassanshahi A, Moradzad M, Ghalamkari S, Fadaei M, Cowin AJ, Hassanshahi M. Macrophage-mediated inflammation in skin wound healing. Cells. 2022 Sep 21;11(19):2953. https://doi.org/10.3390/cells11192953

Peña OA, Martin P. Cellular and molecular mechanisms of skin wound healing. Nature Reviews Molecular Cell Biology. 2024 Aug;25(8):599-616. https://doi.org/10.1038/s41580-024-00715-1

Sohail R, Mathew M, Patel KK, Reddy SA, Haider Z, Naria M, Habib A, Abdin ZU, Chaudhry WR, Akbar A, Patel KK. Effects of non-steroidal anti-inflammatory drugs (NSAIDs) and gastroprotective NSAIDs on the gastrointestinal tract: a narrative review. Cureus. 2023 Apr 3;15(4):37080. https://doi.org/10.7759/cureus.37080

Xiang P, Marat T, Huang J, Cheng B, Liu J, Wang X, Wu L, Tan M, Zhu Q, Lin J. Response of photosynthetic capacity to ecological factors and its relationship with EGCG biosynthesis of tea plant (Camellia sinensis). BMC Plant Biology. 2025 Feb 14;25(1):199. https://doi.org/10.1186/s12870-025-06106-8

Violetta LE. Efek pemberian gel ekstrak teh hijau (Camellia sinensis) pada tikus (Rattus norvegicus) model luka terbuka ditinjau dari ekspresi TGF-β1 (transforming growth factor-beta satu) dan jumlah sel fibroblas [dissertation]. Malang: Universitas Brawijaya; 2017.

Rusdy H, Dohude GA, Putro BA, Syadana NT, Kevin S. Effect of Black Crab (Scylla Serrata) Chitosan Gel on the Three-Dimensional Socket Response and Fibroblasts after Tooth Extraction in Rattus Norvegicus. Journal of Hunan University Natural Sciences. 2024;51(3): 98-109. https://doi.org/10.55463/issn.1674-2974.51.3.12

Hartomo BT, Firdaus FG. Pemanfaatan biomaterial kitosan dalam bidang bedah mulut. B-Dent J Kedokteran Gigi Universitas Baiturrahmah. 2019;6(1):62–70. https://doi.org/10.33854/jbd.v6i1.82

Wei Q, Ma L, Zhang W, Ma G, Hu Z. EGCG-crosslinked carboxymethyl chitosan-based hydrogels with inherent desired functions for full-thickness skin wound healing. Journal of Materials Chemistry B. 2022;10(20):3927-35. https://doi.org/10.1039/D2TB00074A

Kim MJ, Yang YJ, Min GY, Heo JW, Son JD, You YZ, Kim HH, Kim GS, Lee HJ, Yang JH, Park KI. Anti-inflammatory and antioxidant properties of Camellia sinensis L. extract as a potential therapeutic for atopic dermatitis through NF-κB pathway inhibition. Scientific Reports. 2025 Jan 18;15(1):2371. https://doi.org/10.1038/s41598-025-86678-5

Pakizeh M, Moradi A, Ghassemi T. Chemical extraction and modification of chitin and chitosan from shrimp shells. European Polymer Journal. 2021 Oct 5;159:110709. https://doi.org/10.1016/j.eurpolymj.2021.110709

Ye J, Li Q, Zhang Y, Su Q, Feng Z, Huang P, Zhang C, Zhai Y, Wang W. ROS scavenging and immunoregulative EGCG@ Cerium complex loaded in antibacterial polyethylene glycol-chitosan hydrogel dressing for skin wound healing. Acta biomaterialia. 2023 Aug 1;166:155-66. https://doi.org/10.1016/j.actbio.2023.05.027

Ahmadi-Noorbakhsh S, Farajli Abbasi M, Ghasemi M, Bayat G, Davoodian N, Sharif-Paghaleh E, Poormoosavi SM, Rafizadeh M, Maleki M, Shirzad-Aski H, Kargar Jahromi H. Anesthesia and analgesia for common research models of adult mice. Laboratory animal research. 2022 Dec 13;38(1):40. https://doi.org/10.1186/s42826-022-00150-3

Leitão SA, dos Santos Soares D, Junior NC, Zimmer R, Ludwig NF, Andrades M. Study of anesthetics for euthanasia in rats and mice: A systematic review and meta-analysis on the impact upon biological outcomes (SAFE-RM). Life Sciences. 2021 Nov 1;284:119916. https://doi.org/10.1016/j.lfs.2021.119916

Anggayanti NA, Purbasari IG, Wahyuni PS. The effect of 5% Curcuma xanthorrhiza extract gel on diabetic rat socket: A fibroblast analysis. Majalah Kedokteran Gigi. 2024 Jun;57(2):124-30. https://doi.org/10.20473/j.djmkg.v57.i2.p124–130

Lolombulan JH, Utami RI, eds. Analisis Data Statistika Bagi Peneliti Kedokteran dan Kesehatan. Edisi 1. Yogyakarta: Andi; 2020.

Gierlikowska B, Stachura A, Gierlikowski W, Demkow U. Phagocytosis, degranulation and extracellular traps release by neutrophils the current knowledge, pharmacological modulation and future prospects. Frontiers in Pharmacology. 2021 May 4;12:666732. https://doi.org/10.3389/fphar.2021.666732

De Oliveira S, Rosowski EE, Huttenlocher A. Neutrophil migration in infection and wound repair: going forward in reverse. Nature Reviews Immunology. 2016 Jun;16(6):378-91. https://doi.org/10.1038/nri.2016.49

Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annual Review of Pathology: Mechanisms of Disease. 2020 Jan 24;15(1):493-518. https://doi.org/10.7892/boris.143342

Margraf A, Lowell CA, Zarbock A. Neutrophils in acute inflammation: current concepts and translational implications. Blood, The Journal of the American Society of Hematology. 2022 Apr 7;139(14):2130-44. https:// doi 10.1182/blood.2021012295

Soliman AM, Barreda DR. Acute inflammation in tissue healing. International journal of molecular sciences. 2022 Dec 30;24(1):641. https://doi.org/10.3390/ijms24010641

Wang J. Neutrophils in tissue injury and repair. Cell and tissue research. 2018 Mar;371:531-9. https://doi.org/10.1007/s00441-017-2785-7

Raziyeva K, Kim Y, Zharkinbekov Z, Kassymbek K, Jimi S, Saparov A. Immunology of acute and chronic wound healing. Biomolecules. 2021 May 8;11(5):700. https:// doi.org/10.3390/biom11050700

Aitcheson SM, Frentiu FD, Hurn SE, Edwards K, Murray RZ. Skin wound healing: normal macrophage function and macrophage dysfunction in diabetic wounds. Molecules. 2021 Aug 13;26(16):4917. https://doi.org/10.3390/ molecules26164917

Versey Z, da Cruz Nizer WS, Russell E, Zigic S, DeZeeuw KG, Marek JE, Overhage J, Cassol E. Biofilm-innate immune interface: contribution to chronic wound formation. Frontiers in immunology. 2021 Apr 9;12:648554. https://doi.org/10.3389/fimmu.2020.01259

Xu FW, Lv YL, Zhong YF, Xue YN, Wang Y, Zhang LY, Hu X, Tan WQ. Beneficial effects of green tea EGCG on skin wound healing: A comprehensive review. Molecules. 2021 Oct 11;26(20):6123. https://doi.org/10.3390/ molecules26206123

Zhang Z, Zhang X, Bi K, He Y, Yan W, Yang CS, Zhang J. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends in food science & technology. 2021 Aug 1;114:11-24. https://doi.org/ 10.1016/j.tifs.2021.05.023

Mokra D, Joskova M, Mokry J. Therapeutic effects of green tea polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis. International j of molecular sciences. 2022 Dec 25;24(1):340. https://doi.org/ 10.3390/ijms24010340

Liu W, Cui X, Zhong Y, Ma R, Liu B, Xia Y. Phenolic metabolites as therapeutic in inflammation and neoplasms: Molecular pathways explaining their efficacy. Pharmacological research. 2023 Jul 1;193:106812. https://doi.org/10.1016/j.phrs.2023.106812

Jakimiuk K, Gesek J, Atanasov AG, Tomczyk M. Flavonoids as inhibitors of human neutrophil elastase. J of enzyme inhibition and medicinal chemistry. 2021 Jan 1;36(1):1016-28. https://doi.org/10.1080/14756366.2021.1927006

Martínez G, Mijares MR, De Sanctis JB. Effects of flavonoids and its derivatives on immune cell responses. Recent Patents on Inflammation & Allergy Drug Discovery. 2019 Oct 1;13(2):84-104. https://doi.org/10.2174/1872213X13666190426164124

Dewi RK, Oktawati S, Gani A, Suhartono E, Hamrun N, Said SM, Oktiani BW, Noor ZH, Marwah Y. Potential of chitosan black soldier flies (hermetia illucens) pupae on post-extraction wound healing process: Received 2024-03-01; Accepted 2024-03-19; Published 2024-03-26. J of Health and Translational Medicine (JUMMEC). 2024 Mar 26:349-58. https://doi.org/10.22452/jummec.sp2024no1.36

Leliefeld PH, Wessels CM, Leenen LP, Koenderman L, Pillay J. The role of neutrophils in immune dysfunction during severe inflammation. Critical care. 2016 Dec;20:1-9. https://doi.org/10.1186/s13054-016-1250-4




DOI: https://doi.org/10.24198/jkg.v37i1.59224

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jurnal Kedokteran Gigi Universitas Padjadjaran

INDEXING & PARTNERSHIP

     

      

     

 

Statistik Pengunjung

Creative Commons License
Jurnal Kedokteran Gigi Universitas Padjadjaran dilisensikan di bawah Creative Commons Attribution 4.0 International License