Indonesian people’s resilience detection method based on big data
Abstract
The resilience condition of the Indonesian people in facing threats, disturbances, obstacles, and challenges (AGHT) can be identified through conversations on social media. The conversational data of social media users is important data for understanding the national resilience of the Indonesian people. The method developed is more explorative, descriptive, and quantitative by describing the variable: volume of social media users, user profiles, reach, conversation trends, types of issues, top tweets, emotion, sentiment, people who influence (top influencer), intermediary (bridge), and robot analysis (bot analysis). The research sample is from March 1, 2022, to May 1, 2022. Consideration of the timing is due to many public reactions to the “three periods” issue. The results of this study indicate that the three-period issue is the most dominant compared to other topics. The issue of “three periods” spread throughout Indonesia, and the most dominant was in DKI Jakarta Province. The social media users’ profile shows that the issue of three periods is mostly discussed by users between the ages of 19 and 29. Men are more dominant in discussing the “three periods” issue than women. Most Indonesian people reject the three-period issue. It shows that the resilience of the Indonesian people is exceptional because they can confront negative issues.
Keywords
Full Text:
PDFReferences
Batrinca, B., & Treleaven, P. C. (2014). Social media analytics: A survey of techniques, tools and platforms. AI and Society, 30(1). https://doi.org/10.1007/s00146-014-0549-4
Bello-Orgaz, G., Jung, J. J., & Camacho, D. (2016). Social big data: Recent achievements and new challenges. Information Fusion, 28. https://doi.org/10.1016/j.inffus.2015.08.005
Bohlouli, M., Dalter, J., Dornhöfer, M., Zenkert, J., & Fathi, M. (2015). Knowledge discovery from social media using big data-provided sentiment analysis (SoMABiT). In Journal of Information Science (Vol. 41, Issue 6). https://doi.org/10.1177/0165551515602846
Denzin, N. K., & Lincoln, Y. S. (2000). The discipline and practice of qualitative research. In Handbook of Qualitative Research. New York: Sage Publications Ltd.
Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2). https://doi.org/10.1016/j.ijinfomgt.2014.10.007
Griffin, E. (2008). Spiral of silence of Elizabeth Noelle-Neumann. A First Look at Communication Theory.
Hansen, D. L., Shneiderman, B., & Smith, M. A. (2011). Analyzing social media networks with NodeXL. In Analyzing Social Media Networks with NodeXL. https://doi.org/10.1016/C2009-0-64028-9
Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Ullah Khan, S. (2015). The rise of “big data” on cloud computing: Review and open research issues. Information Systems, 47, 98-115. https://doi.org/10.1016/j.is.2014.07.006
Imran, M., Castillo, C., Diaz, F., & Vieweg, S. (2015). Processing social media messages in mass emergency: A survey. ACM Computing Surveys, 47(4). https://doi.org/10.1145/2771588
Khan, M. A. U. D., Uddin, M. F., & Gupta, N. (2014). Seven V’s of big data understanding big data to extract value. Proceedings of the 2014 Zone 1 Conference of the American Society for Engineering Education - “Engineering Education: Industry Involvement and Interdisciplinary Trends”, ASEE Zone 1 2014. https://doi.org/10.1109/ASEEZone1.2014.6820689
Khan, N., Yaqoob, I., Hashem, I. A. T., Inayat, Z., Mahmoud Ali, W. K., Alam, M., Shiraz, M., & Gani, A. (2014). Big data: Survey, technologies, opportunities, and challenges. Scientific World Journal, 2014. https://doi.org/10.1155/2014/712826
Littejohn, S. W. (2009). Teori komunikasi (Theories of human communication) (R. Oktaviani, Ed.; 9th ed.). Jakarta: Salemba Humanika.
Neuman, W. L. (2011). Social research methods: Qualitative and quantitative approaches. Boston: Allyn and Bacon.
Newman, R., Chang, V., Walters, R. J., & Wills, G. B. (2016). Web 2.0 - The past and the future. International Journal of Information Management, 36(4). https://doi.org/10.1016/j.ijinfomgt.2016.03.010
Philip Chen, C. L., & Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on big data. Information Sciences, 275. https://doi.org/10.1016/j.ins.2014.01.015
Sikos, T. T., & Meirmanova, A. (2020). Geo-based visual network analysis of export and import patterns in international wheat trade. Geographia Technica, 15(2). https://doi.org/10.21163/GT_2020.152.09
Stieglitz, S., & Dang-Xuan, L. (2013a). Social media and political communication: A social media analytics framework. Social Network Analysis and Mining, 3(4). https://doi.org/10.1007/s13278-012-0079-3
Stieglitz, S., & Dang-Xuan, L. (2013b). Social media and political communication: A social media analytics framework. Social Network Analysis and Mining. https://doi.org/10.1007/s13278-012-0079-3
Stieglitz, S., Dang-Xuan, L., Bruns, A., & Neuberger, C. (2014). Social media analytics: An interdisciplinary approach and its implications for information systems. Wirtschaftsinf, 56, 101–109. https://doi.org/10.1007/s11576-014-0407-5
Tang, J., & Chen, W. (2015). Deep analytics and mining for big social data. Kexue Tongbao/Chinese Science Bulletin, 60(5–6). https://doi.org/10.1360/N972014-00954
DOI: https://doi.org/10.24198/jkk.v10i2.41900
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Catur Suratnoaji, Irwan Dwi Arianto, Syifa Syarifah Alamiyah

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Jurnal Kajian Komunikasi Indexed by:
Editorial Office of Jurnal Kajian Komunikasi:
Faculty of Communication Science, Universitas Padjadjaran
Jl. Raya Bandung-Sumedang Km. 21 Jatinangor, Sumedang 45363, Indonesia
WA: +6282316731181 (Chat Only)
Telephone: +62227796954
Faxmile: +62227794122
E-mail: jurnal.kajian.komunikasi@unpad.ac.id
Jurnal Kajian Komunikasi Supervised by: