Analisis Sistem Kriptografi ElGamal Untuk Membentuk Sistem Kunci Publik Berbasis Grup Non-Komutatif

Maxrizal Maxrizal, Syafrul Irawadi

Abstract


Penelitian ini mengkaji sifat logaritma diskrit pada sistem kriptografi Elgamal untuk membentuk sistem kriftografi dengan kunci privat berupa suatu matriks. Penelitian ini merupakan jenis penelitian studi literatur. Hasil penelitian menunjukkan bahwa sistem kriptografi yang diusulkan dapat bekerja dengan baik untuk membangkitkan pasangan kunci, enkripsi dan deskripsi. Kami juga bisa menunjukkan bahwa sistem kriptografi yang diusulkan tahan terhadap segala kemungkinan serangan matematis. Peretas atau penyadap dipaksa untuk melakukan brute force attack jika ingin meretas data atau pesan dari sistem kriptografi yang diusulkan.

Keywords


kunci matriks, matriks ElGamal, kriptografi matriks, non-komutatif kriftografi, non-komutatif ElGamal.

References


Rao F-Y, 2015 On the Security of a Variant of ElGamal Encryption Scheme IEEE Trans. Dependable Secur. Comput. 14, 8 p. 1–4.

Maxrizal Saftari M Perkasa E B and Irawan D, 2019 Modifikasi Sistem Kripto Elgamal Hasil Konstruksi Marc Joye Menggunakan General Linear Group AKSIOMA J. Mat. dan Pendidik. Mat. 10, 1 p. 102–111.

Maxrizal Saftari M Marna and Sujono, 2019 Generalisasi Sistem Kriptografi ElGamal Menggunakan Konsep Matriks Nonsingular in Seminar Nasional Sistem Informasi dan Teknik Informatika (SENSITIF) p. 21–26.

Joye M, 2016 Secure ElGamal-Type Cryptosystems Without Message Encoding Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 9100 p. 470–478.

Bharathi C R, 2018 Improved ELGAMAL Encryption for Elliptic Curve Cryptography Int. J. Pure Appl. Math. 118, 17 p. 341–353.

Chang T-Y Hwang M-S and Yang W-P, 2013 Cryptanalysis on an Improved Version of ElGamal-Like Public-Key Encryption Scheme for Encrypting Large Messages Inform. 0, 0 p. 1–30.

Karatas Z Y Luy E and Gonen B, 2019 A Public Key Cryptosystem Based on Matrices Int. J. Comput. Appl. 182, 42 p. 47–50.

Krishna A V N Narayana A H and Vani K M, 2017 A Novel Approach with Matrix Based Public Key Cryptosystems J. Discret. Math. Sci. Cryptogr. 20, 2 p. 407–412.

Zeriouh M Chillali A and Boua A, 2019 Cryptography Based on the Matrices Bol. Soc. Paran. Mat 3, 3 p. 75–83.

Kahrobaei D Koupparis C and Shpilrain V, 2013 Public Key Exchange Using Matrices Over Group Rings Groups, Complexity, Cryptol. 5, 1 p. 97–115.

Andrecut M, 2015, A Matrix Public Key Cryptosystem.

Dwivedi A Ojha D B Sharma A and Mishra A, 2011 A Model of Key Agreement Protocol using Polynomials over Non-Cummutative Division Semirings J. Glob. Res. Comput. Sci. 2, 3 p. 40–43.

Anjaneyulu G S G N and Sanyasirao A, 2014 Distributed Group Key Management Protocol over Non-commutative Division Semirings Indian J. Sci. Technol. 7, 6 p. 871–876.

Ezhilmaran D and Muthukumaran V, 2016 Key Exchange Protocol Using Decomposition Problem In Near Ring Gazi Univ. J. Sci. 29, 1 p. 123–127.

Liu J Zhang H Jia J Wang H Mao S and Wu W, 2016 Cryptanalysis of an Asymmetric Cipher Protocol Using a Matrix Decomposition Problem Sciece China. Inf. Sci. 59, 11 p. 1–11.

Liu J Zhang H and Jia J, 2017 Cryptanalysis of Schemes Based on Polynomial Symmetrical Decomposition Chinese J. Electron. 26, 6 p. 1139–1146.

Mahalanobis A, 2012 A Simple Generalization of the ElGamal Cryptosystem to Non-Abelian Groups II Commun. Algebr. 40, 9 p. 3583–3596.

Anton H and Rorres C, 2013 Elementary Linear Algebra: Applications Version, 11th Edition Wiley eGrade.

Dummit D S and Foote R M, 2004 Abstract Algebra 3rd ed. John Wiley & Sons Inc.




DOI: https://doi.org/10.24198/jmi.v16.n2.29197.117-125

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jurnal Matematika Integratif

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Published By:

Department of Matematics, FMIPA, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM. 21 Jatinangor


Indexed by:

width=width= width= width= width= width=

 

Visitor Number : free
hit counter View My Stats


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.