Penyelesaian Masalah Optimisasi Multiobjektif Nonlinear Menggunakan Pendekatan Pareto Front dalam Metode Pembobotan

Syarifah Inayati, Rahmawati Rahmawati

Abstract


Teori optimisai merupakan salah satu disiplin ilmu matematika yang banyak diterapkan dalam dunia nyata. Hampir semua masalah optimisasi di dunia nyata memiliki banyak fungsi objektif (multiobjektive) yang harus dipenuhi secara simultan dan seringkali fungsi-fungsi tersebut saling bertentangan. Permasalahan optimisasi yang ada dapat berbentuk linier dan non linier. Penelitian ini akan membahas secara teoritis mengenai permasalahaan multiobjektif nonlinear. Solusi optimal dari masalah tersebut tidak akan didapatkan solusi optimum tunggal, tapi berupa kumpulan solusi alternatif. Kumpulan solusi tersebut disebut himpunan Pareto optimal atau Pareto front. Himpunan Pareto optimal tersebut berkorespondensi dengan Pareto-optimal front. Jika Pareto-optimal front tersebut konveks, maka solusi masalah ini dapat diselesaikan dengan metode pembobotan (weighted sum method).

Keywords


Metode pembobotan; optimisasi multiobjektif nonlinear; Pareto front

References


Chankong, V. and Haimes, Y. Y., 1983, Multi-objective decision making, Multiobjective Decision Making Theory and Methodology, North-Holland: New York.

Craven, B. D. and Islam, S. M. N., 2005, Optimization in Economics and Finance: Some Advances in Non-Linear, Dynamic, Multi-Criteria and Stochastic Models. USA: Springer.

Marler, R. T. and Arora, J. S., 2010, The weighted sum method for multi-objective optimization: New insights, Structural and Multidisciplinary Optimization, Volume 41, Issue 6, Pages 853–862.

Pätäri, E. et al., 2018, Comparison of the multicriteria decision-making methods for equity portfolio selection: The U.S. evidence, European Journal of Operational Research, Volume 265, Issue 2, Pages 655–672.

Ryu, J. H., Kim, S. and Wan, H., 2009, Pareto front approximation with adaptive weighted sum method in multiobjective simulation optimization, Proceedings - Winter Simulation Conference, pp. 623–633.

Tappeta, R. V., Renaud, J. E. and Rodríguez, J. F., 2002, An interactive multiobjective optimization design strategy for decision based multidisciplinary design, Engineering Optimization, Volume 34, Issue 5, Pages 523–544.

Zitzler, E., Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, Computer Engineering and Networks Laboratory, Institute fu ̈r Technische Informatik und Kommunikationsnetze, 1999.




DOI: https://doi.org/10.24198/jmi.v16.n2.29278.139-149

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jurnal Matematika Integratif

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Published By:

Department of Matematics, FMIPA, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM. 21 Jatinangor


Indexed by:

width=width= width= width= width= width=

 

Visitor Number : free
hit counter View My Stats


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.