On Sums Involving Polynomials and Generalized Fibonacci Sequences

Ivan Hadinata

Abstract


Let $(s_n)_{n\geq 0}$ be a generalized Fibonacci sequence with initial values $s_0 = c_0$, $s_1 = c_1$ that satisfies the recurrence relation $s_{n+1}=as_{n}+bs_{n-1}$ for all positive integers $n$, where $a,b\in\mathbb N$, $c_0,c_1\in\mathbb Z$, $(c_0,c_1)\neq (0,0)$. In this paper, we get the result that for every polynomials $P(x)$ with real coefficients, we can always find three polynomials $F_1(x), G_1(x), H_1(x)$ with real coefficients satisfying the identity: $\;\sum_{k=1}^{n}P(k)s_{k-1} = F_1(n)s_{n+1} + G_1(n)s_n + H_1(n) \;$ for all positive integers $n$. Furthermore, we present two cases for $(s_n)_{n\geq 0}$: one case implies that there are infinitely many triples $(F_1(x), G_1(x), H_1(x))$ satisfying that identity, while another one implies that there is only one triple $(F_1(x), G_1(x), H_1(x))$ satisfying that identity.

Keywords


Fibonacci sums, generalized Fibonacci sequences, polynomials of real coefficients, finite series

Full Text:

PDF

References


bibitem[1]{bro brousseau} Brousseau, B.A., 1967. Summation of $sum_{k=1}^{n}k^m F_{k+r}$: Finite Difference Approach. Fibonacci Quarterly, 5(1): 91-98.

bibitem[2]{Gupta-Panwar-Sikhwal-2012} Gupta, V.K., Panwar, Y.K. and Sikhwal, O., 2012. Generalized Fibonacci Sequences. Theoretical

Mathematics and Applications, 2(2): 115-124.

bibitem[3]{AFH-AMM} Horadam, A.F., 1961, The Generalized Fibonacci Sequences. The American Mathematical Monthly, 68(5): 455-459.

bibitem[4]{horadam} Horadam, A.F., 1965. Basic Properties of a Certain Generalized Sequence of Numbers. The Fibonacci Quarterly, 3(3): 161-176.

bibitem[5]{kalman-mena-about-fibonacci} Kalman, D. and Mena, R., 2003, The Fibonacci Numbers - Exposed. Mathematics Magazine, 76(3): 167-181.

bibitem[6]{koshy with fibonacci and lucas} Koshy, T., 2001, ,textit{Fibonacci and Lucas Numbers with Applications}., A

Wiley-Interscience Publication.

bibitem[7]{koshy with pell} Koshy, T., 2014, ,textit{Pell and Pell-Lucas Numbers with Applications}., Springer.

bibitem[8]{g. ledin} Ledin, G., 1967, "On A Certain Kind of Fibonacci Sums", Fibonacci Quarterly, 5(1): 45-58.

bibitem[9]{pi mu epsilon} Miller, S.J., 2024, Spring 2024 Pi Mu Epsilon Journal (Problem 1410), web: url{https://pme-math.org/pme-journal-problem-department}

bibitem[10]{Panwar-Singh-Gupta-2014} Panwar, Y.K., Singh, B. and Gupta, V.K., 2014. Generalized Fibonacci Sequences and Its Properties. Palestine Journal of Mathematics, 3(1): 141–147.

bibitem[11]{sloane} Sloane, N.J.A., 2024, "Jacobsthal sequence: A001045". The On-line Encyclopedia of Integer Sequences. Available

at url{https://oeis.org/}

bibitem[12]{tagiuri} Tagiuri, A. "Di alcune successioni ricorrenti a termini interi e positivi", Periodico di Matematica, 16 (1901), pp. 1-12.




DOI: https://doi.org/10.24198/jmi.v20.n2.58753.233-248

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Matematika Integratif

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Published By:

Department of Matematics, FMIPA, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM. 21 Jatinangor


Indexed by:

width=width= width= width= width= width=

 

Visitor Number : free
hit counter View My Stats


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.