PERAMALAN INDEKS ULTRAVIOLET DI KOTA BANDUNG MENGGUNAKAN METODE LONG SHORT-TERM MEMORY
Abstract
Keywords
Full Text:
PDFReferences
Vanicek, K., Frei, T., Litynska, Z., and Schmalwieser, A., “UV-Index for the Public COST-713 participating countries,” 1999.
Rehfuess E. Global solar UV index: a practical guide. World Health Organization; 2002.
Gers, F., Schmidhuber, J., and Cummins, F. “Learning to Forget: Continual Prediction with LSTM,” Neural Comput, vol. 12, pp. 2451–2471, Oct. 2000, doi: 10.1162/089976600300015015.
Van Houdt, G., Mosquera, C., and Nápoles, G. “A review on the long short-term memory model,” Artif Intell Rev, vol. 53, no. 8, pp. 5929–5955, Dec. 2020, doi: 10.1007/s10462-020-09838-1.
T. P. Lillicrap and A. Santoro, “Backpropagation through time and the brain,” Curr Opin Neurobiol, vol. 55, pp. 82–89, 2019, doi: https://doi.org/10.1016/j.conb.2019.01.011.
Chang, Z., Zhang, Y., and Chen, W. “Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform,” Energy, vol. 187, Nov. 2019, doi: 10.1016/j.energy.2019.07.134.
Wibowo, A., Wiryawan, P. W., and Nuqoyati, N. I. “Optimization of neural network for cancer microRNA biomarkers classification,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Jun. 2019. doi: 10.1088/1742-6596/1217/1/012124.
Sharma, D. K., Chatterjee, M., Kaur, G., & Vavilala, S., “3 - Deep learning applications for disease diagnosis,” in Deep Learning for Medical Applications with Unique Data, pp. 31-51. Academic Press. Gupta, D. Kose, U., Khanna, A., and Balas, V.E. Eds., Academic Press, 2022, pp. 31–51. doi: https://doi.org/10.1016/B978-0-12-824145-5.00005-8.
de Myttenaere, A. Golden, B. Le Grand, and Rossi, F. “Mean Absolute Percentage Error for regression models,” Neurocomputing, vol. 192, pp. 38–48, 2016, doi: https://doi.org/10.1016/j.neucom.2015.12.114.
Lewis, C. D. Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting Butterworth scientific, Illustrated. Butterworth Scientific, 1982.
Kumar, S. L., “Predictive analytics of covid-19 pandemic: Statistical modelling perspective,” Walailak J Sci Technol, vol. 18, no. 16, Aug. 2021, doi: 10.48048/wjst.2021.15583.
DOI: https://doi.org/10.24198/jmi.v20.n2.58798.249-258
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Jurnal Matematika Integratif

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published By:
Department of Matematics, FMIPA, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM. 21 Jatinangor
Indexed by:
Visitor Number : View My Stats
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.