Application of Module Structure to Coding Theory: A Systematic Literature Review
Abstract
Full Text:
PDFReferences
P. L. Clark, “COMMUTATIVE ALGEBRA.”
F. Henglein, R. Kaarsgaard, and M. K. Mathiesen, “The Programming of Algebra,” in Electronic Pro-ceedings in Theoretical Computer Science, EPTCS, Jun. 2022, vol. 360, pp. 71–92. doi: 10.4204/EPTCS.360.4.
T. Westerbäck, “Parity check systems of nonlinear codes over finite commutative Frobenius rings,” Apr. 2016, [Online]. Available: http://arxiv.org/abs/1604.06996
A. K. Sinha, “Application of Module Structure of Algebra in Coding Theory in Different Branches of Engineering,” 2013.
E. Gorla and A. Ravagnani, “An algebraic framework for end-to-end physical-layer network coding,” Nov. 2016, [Online]. Available: http://arxiv.org/abs/1611.04226
J. Gómez-Torrecillas, F. J. Lobillo, and G. Navarro, “Ideal codes over separable ring extensions,” Aug. 2014, [Online]. Available: http://arxiv.org/abs/1408.1546
M. Sala, T. Mora, L. Perret, S. Sakata, and C. Traverso, Gröbner bases, coding, and cryptography. Springer Berlin Heidelberg, 2009. doi: 10.1007/978-3-540-93806-4.
T. P. Berger and N. el Amrani, “Codes over finite quotients of polynomial rings,” Finite Fields and their Applications, vol. 25, pp. 165–181, 2014, doi: 10.1016/j.ffa.2013.09.004.
J. A. Wood, “CODE EQUIVALENCE CHARACTERIZES FINITE FROBENIUS RINGS,” 2008. [Online]. Available: https://www.ams.org/journal-terms-of-use
S. Mahmoudi, F. Mirmohammadirad, and K. Samei, “Fq-linear codes over Fq-algebras,” Finite Fields and their Applications, vol. 64, Jun. 2020, doi: 10.1016/j.ffa.2020.101665.
S. Ling and P. Solé, “On the Algebraic Structure of Quasi-Cyclic Codes I: Finite Fields,” 2001.
M. Borello and W. Willems, “On the algebraic structure of quasi group codes,” Dec. 2019, [Online]. Available: http://arxiv.org/abs/1912.09167
S. Ling and P. Solé, “On the algebraic structure of quasi-cyclic codes III: Generator theory,” IEEE Trans Inf Theory, vol. 51, no. 7, pp. 2692–2700, Jul. 2005, doi: 10.1109/TIT.2005.850142.
D. Boucher, W. Geiselmann, and F. Ulmer, “Skew-cyclic codes,” Applicable Algebra in Engineering, Communications and Computing, vol. 18, no. 4, pp. 379–389, 2007, doi: 10.1007/s00200-007-0043-z.
D. Boucher, P. Sole, F. Ulmer, D. Boucher, P. Solé, and F. Ulmer, “Skew Constacyclic Codes over Galois Rings,” 2008. [Online]. Available: https://hal.archives-ouvertes.fr/hal-00359833
J. Cuadra, J. M. García-Rubira, and J. A. López-Ramos, “Determining all indecomposable codes over some Hopf algebras,” J Comput Appl Math, vol. 235, no. 7, pp. 1833–1839, Feb. 2011, doi: 10.1016/j.cam.2010.07.014.
A. Edelmayer and International Symposium on the Mathematical Theory of Networks and Systems., MTNS 2010 : 19th international symposium on mathematical theory of networks and systems, MTNS 2010, Budapest, Hungary, 05-09.07.2010. 2010.
D. Manchon, “Hopf Algebras in Renormalisation,” Handbook of Algebra, vol. 5. pp. 365–427, 2008. doi: 10.1016/S1570-7954(07)05007-3.
J. J. Climent, D. Napp, C. Perea, and R. Pinto, “A construction of MDS 2D convolutional codes of rate 1 / n based on superregular matrices,” Linear Algebra Appl, vol. 437, no. 3, pp. 766–780, Aug. 2012, doi: 10.1016/j.laa.2012.02.032.
H. Gluesing-Luerssen, J. Rosenthal, and P. A. Weiner, “Duality between Multidimensional Convolu-tional Codes and Systems *,” 1999.
K. Lally, “Algebraic lower bounds on the free distance of convolutional codes,” IEEE Trans Inf Theory, vol. 52, no. 5, pp. 2101–2110, May 2006, doi: 10.1109/TIT.2006.872980.
Q. T. Sun, J. Yuan, T. Huang, and K. W. Shum, “Lattice network codes based on eisenstein integers,” IEEE Transactions on Communications, vol. 61, no. 7, pp. 2713–2725, 2013, doi: 10.1109/TCOMM.2013.050813.120759.
T. Y. Lam and A. Leroy, “Wedderburn polynomials over division rings, I,” J Pure Appl Algebra, vol. 186, no. 1, pp. 43–76, Jan. 2004, doi: 10.1016/S0022-4049(03)00125-7.
T. Y. Lam, A. Leroy, and A. Ozturk, “Wedderburn polynomials over division rings, II,” Jun. 2007, [Online]. Available: http://arxiv.org/abs/0706.3515
T. Y. Lam and A. Leroy, “Wedderburn Polynomials over Division Rings,” 1999.
V. Guruswami and M. Sudan, “Improved Decoding of Reed-Solomon and Algebraic-Geometry Codes,” 1999.
R. Koetter and A. Vardy, “Algebraic Soft-Decision Decoding of Reed-Solomon Codes,” IEEE Trans Inf Theory, vol. 49, no. 11, pp. 2809–2825, Nov. 2003, doi: 10.1109/TIT.2003.819332.
R. Koetter and A. Vardy, “A Complexity Reducing Transformation in Algebraic List Decoding of Reed-Solomon Codes.”
R. Koetter, J. Ma, and A. Vardy, “The Re-Encoding Transformation in Algebraic List-Decoding of Reed-Solomon Codes,” May 2010, [Online]. Available: http://arxiv.org/abs/1005.5734
K. Lee and M. E. O’Sullivan, “List decoding of Reed-Solomon codes from a Gröbner basis perspective,” J Symb Comput, vol. 43, no. 9, pp. 645–658, Sep. 2008, doi: 10.1016/j.jsc.2008.01.002.
K. Lee and M. E. O’sullivan, “An Interpolation Algorithm using Gröbner Bases for Soft-Decision De-coding of Reed-Solomon Codes.”
M. Alekhnovich, “Linear Diophantine equations over polynomials and soft decoding of Reed-Solomon codes,” 2002.
A. Zeh, C. Gentner, and D. Augot, “An Interpolation Procedure for List Decoding Reed--Solomon codes Based on Generalized Key Equations,” Oct. 2011, doi: 10.1109/TIT.2011.2162160.
J. Xing, L. Chen, and M. Bossert, “Low-Complexity Chase Decoding of Reed-Solomon Codes Using Module,” IEEE Transactions on Communications, vol. 68, no. 10, pp. 6012–6022, Oct. 2020, doi: 10.1109/TCOMM.2020.3011991.
J. Xing, L. Chen, and M. Bossert, “Progressive Algebraic Soft-Decision Decoding of Reed-Solomon Codes Using Module Minimization,” in IEEE Transactions on Communications, Nov. 2019, vol. 67, no. 11, pp. 7379–7391. doi: 10.1109/TCOMM.2019.2927207.
L. Chen, S. Tang, and X. Ma, “Progressive algebraic soft-decision decoding of reed-solomon codes,” IEEE Transactions on Communications, vol. 61, no. 2, pp. 433–442, 2013, doi: 10.1109/TCOMM.2012.100912.110752.
L. Chen and M. Bossert, “Algebraic Chase Decoding of Reed-Solomon Codes Using Module Minimi-sation,” 2016.
F. Özbudak and B. Özkaya, “A minimum distance bound for quasi-nD-cyclic codes,” Finite Fields and their Applications, vol. 41, pp. 193–222, Sep. 2016, doi: 10.1016/j.ffa.2016.06.004.
M. Shi, J. Tang, M. Ge, L. Sok, and P. Solé, “A special class of quasi-cyclic codes,” Bull Aust Math Soc, vol. 96, no. 3, pp. 513–518, Dec. 2017, doi: 10.1017/S0004972717000636.
E. Gorla and A. Ravagnani, “An algebraic framework for end-to-end physical-layer network coding,” Nov. 2016, [Online]. Available: http://arxiv.org/abs/1611.04226
T. P. Berger and N. el Amrani, “Codes over finite quotients of polynomial rings,” Finite Fields and their Applications, vol. 25, pp. 165–181, 2014, doi: 10.1016/j.ffa.2013.09.004.
M. Boulagouaz and A. Leroy, “(Sigma-Delta) Codes,” Apr. 2013, [Online]. Available: http://arxiv.org/abs/1304.6518
J. Gómez-Torrecillas, F. J. Lobillo, and G. Navarro, “Ideal codes over separable ring extensions,” Aug. 2014, [Online]. Available: http://arxiv.org/abs/1408.1546
J. Gómez-Torrecillas, E. Hieta-Aho, F. J. Lobillo, S. López-Permouth, and G. Navarro, “Some remarks on non projective Frobenius algebras and linear codes,” Des Codes Cryptogr, vol. 88, no. 1, pp. 1–15, Jan. 2020, doi: 10.1007/s10623-019-00666-1.
S. Dyshko and J. A. Wood, “MacWilliams extension property for arbitrary weights on linear codes over module alphabets,” Des Codes Cryptogr, vol. 90, no. 11, pp. 2683–2701, Nov. 2022, doi: 10.1007/s10623-021-00945-w.
C. Guneri and B. Ozkaya, “Multidimensional quasi-cyclic and convolutional codes,” IEEE Trans Inf Theory, vol. 62, no. 12, pp. 6772–6785, Dec. 2016, doi: 10.1109/TIT.2016.2616467.
J. V. S. Morales, “On Lee association schemes over Z4 and their Terwilliger algebra,” Linear Algebra Appl, vol. 510, pp. 311–328, Dec. 2016, doi: 10.1016/j.laa.2016.08.033.
T. Westerbäck, “Parity check systems of nonlinear codes over finite commutative Frobenius rings,” Apr. 2016, [Online]. Available: http://arxiv.org/abs/1604.06996
J. M. García-Rubira and J. A. López-Ramos, “Tensor products of ideal codes over Hopf algebras,” Sci China Math, vol. 56, no. 4, pp. 737–744, Apr. 2013, doi: 10.1007/s11425-013-4579-z.
T. Shanmugam and S. Thanuskodi, “Bibliometric Analysis of the Indian Journal of Chemistry, S. Thanuskodi,” Bibliometric Analysis of the Indian Journal of Chemistry, [Online]. Available: http://unllib.unl.edu/LPP/
K. C. Garg and C. Sharma, “Bibliometrics of library and information science research in India during 2004-2015,” DESIDOC Journal of Library and Information Technology, vol. 37, no. 3, pp. 221–227, 2017, doi: 10.14429/djlit.37.3.11188. H. Mallawaarachchi, Y. Sandanayake,
G. Karunasena, and C. Liu, “Unveiling the conceptual devel-opment of industrial symbiosis: Bibliometric analysis,” Journal of Cleaner Production, vol. 258. Elsevier Ltd, Jun. 10, 2020. doi: 10.1016/j.jclepro.2020.120618.
DOI: https://doi.org/10.24198/jmi.v21.n1.60276.103-112
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Jurnal Matematika Integratif

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Published By:
Department of Matematics, FMIPA, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM. 21 Jatinangor
Indexed by:
Visitor Number : View My Stats
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.