Application of Module Structure to Coding Theory: A Systematic Literature Review

Muhammad Faldiyan, Sisilia Sylviani

Abstract


A systematic literature review is a research process that identifies, evaluates, and interprets all relevant study findings connected to specific research questions, topics, or phenomena of interest. In this work, a thorough review of the literature on the issue of the link between module structure and coding theory was done. A literature search yielded 470 articles from the Google Scholar, Dimensions, and Science Direct databases. After further article selection process, 14 articles were chosen to be studied in further depth. The items retrieved were from the previous ten years, from 2012 to 2022. The PRISMA analytical approach and bibliometric analysis were employed in this investigation. A more detailed description of the PRISMA technique and the significance of the bibliometric analysis is provided. The findings of this study are presented in the form of brief summaries of the 14 articles and research recommendations. At the end of the study, recommendations for future development of the code structure utilized in the articles that are further investigated are made

Full Text:

PDF

References


P. L. Clark, “COMMUTATIVE ALGEBRA.”

F. Henglein, R. Kaarsgaard, and M. K. Mathiesen, “The Programming of Algebra,” in Electronic Pro-ceedings in Theoretical Computer Science, EPTCS, Jun. 2022, vol. 360, pp. 71–92. doi: 10.4204/EPTCS.360.4.

T. Westerbäck, “Parity check systems of nonlinear codes over finite commutative Frobenius rings,” Apr. 2016, [Online]. Available: http://arxiv.org/abs/1604.06996

A. K. Sinha, “Application of Module Structure of Algebra in Coding Theory in Different Branches of Engineering,” 2013.

E. Gorla and A. Ravagnani, “An algebraic framework for end-to-end physical-layer network coding,” Nov. 2016, [Online]. Available: http://arxiv.org/abs/1611.04226

J. Gómez-Torrecillas, F. J. Lobillo, and G. Navarro, “Ideal codes over separable ring extensions,” Aug. 2014, [Online]. Available: http://arxiv.org/abs/1408.1546

M. Sala, T. Mora, L. Perret, S. Sakata, and C. Traverso, Gröbner bases, coding, and cryptography. Springer Berlin Heidelberg, 2009. doi: 10.1007/978-3-540-93806-4.

T. P. Berger and N. el Amrani, “Codes over finite quotients of polynomial rings,” Finite Fields and their Applications, vol. 25, pp. 165–181, 2014, doi: 10.1016/j.ffa.2013.09.004.

J. A. Wood, “CODE EQUIVALENCE CHARACTERIZES FINITE FROBENIUS RINGS,” 2008. [Online]. Available: https://www.ams.org/journal-terms-of-use

S. Mahmoudi, F. Mirmohammadirad, and K. Samei, “Fq-linear codes over Fq-algebras,” Finite Fields and their Applications, vol. 64, Jun. 2020, doi: 10.1016/j.ffa.2020.101665.

S. Ling and P. Solé, “On the Algebraic Structure of Quasi-Cyclic Codes I: Finite Fields,” 2001.

M. Borello and W. Willems, “On the algebraic structure of quasi group codes,” Dec. 2019, [Online]. Available: http://arxiv.org/abs/1912.09167

S. Ling and P. Solé, “On the algebraic structure of quasi-cyclic codes III: Generator theory,” IEEE Trans Inf Theory, vol. 51, no. 7, pp. 2692–2700, Jul. 2005, doi: 10.1109/TIT.2005.850142.

D. Boucher, W. Geiselmann, and F. Ulmer, “Skew-cyclic codes,” Applicable Algebra in Engineering, Communications and Computing, vol. 18, no. 4, pp. 379–389, 2007, doi: 10.1007/s00200-007-0043-z.

D. Boucher, P. Sole, F. Ulmer, D. Boucher, P. Solé, and F. Ulmer, “Skew Constacyclic Codes over Galois Rings,” 2008. [Online]. Available: https://hal.archives-ouvertes.fr/hal-00359833

J. Cuadra, J. M. García-Rubira, and J. A. López-Ramos, “Determining all indecomposable codes over some Hopf algebras,” J Comput Appl Math, vol. 235, no. 7, pp. 1833–1839, Feb. 2011, doi: 10.1016/j.cam.2010.07.014.

A. Edelmayer and International Symposium on the Mathematical Theory of Networks and Systems., MTNS 2010 : 19th international symposium on mathematical theory of networks and systems, MTNS 2010, Budapest, Hungary, 05-09.07.2010. 2010.

D. Manchon, “Hopf Algebras in Renormalisation,” Handbook of Algebra, vol. 5. pp. 365–427, 2008. doi: 10.1016/S1570-7954(07)05007-3.

J. J. Climent, D. Napp, C. Perea, and R. Pinto, “A construction of MDS 2D convolutional codes of rate 1 / n based on superregular matrices,” Linear Algebra Appl, vol. 437, no. 3, pp. 766–780, Aug. 2012, doi: 10.1016/j.laa.2012.02.032.

H. Gluesing-Luerssen, J. Rosenthal, and P. A. Weiner, “Duality between Multidimensional Convolu-tional Codes and Systems *,” 1999.

K. Lally, “Algebraic lower bounds on the free distance of convolutional codes,” IEEE Trans Inf Theory, vol. 52, no. 5, pp. 2101–2110, May 2006, doi: 10.1109/TIT.2006.872980.

Q. T. Sun, J. Yuan, T. Huang, and K. W. Shum, “Lattice network codes based on eisenstein integers,” IEEE Transactions on Communications, vol. 61, no. 7, pp. 2713–2725, 2013, doi: 10.1109/TCOMM.2013.050813.120759.

T. Y. Lam and A. Leroy, “Wedderburn polynomials over division rings, I,” J Pure Appl Algebra, vol. 186, no. 1, pp. 43–76, Jan. 2004, doi: 10.1016/S0022-4049(03)00125-7.

T. Y. Lam, A. Leroy, and A. Ozturk, “Wedderburn polynomials over division rings, II,” Jun. 2007, [Online]. Available: http://arxiv.org/abs/0706.3515

T. Y. Lam and A. Leroy, “Wedderburn Polynomials over Division Rings,” 1999.

V. Guruswami and M. Sudan, “Improved Decoding of Reed-Solomon and Algebraic-Geometry Codes,” 1999.

R. Koetter and A. Vardy, “Algebraic Soft-Decision Decoding of Reed-Solomon Codes,” IEEE Trans Inf Theory, vol. 49, no. 11, pp. 2809–2825, Nov. 2003, doi: 10.1109/TIT.2003.819332.

R. Koetter and A. Vardy, “A Complexity Reducing Transformation in Algebraic List Decoding of Reed-Solomon Codes.”

R. Koetter, J. Ma, and A. Vardy, “The Re-Encoding Transformation in Algebraic List-Decoding of Reed-Solomon Codes,” May 2010, [Online]. Available: http://arxiv.org/abs/1005.5734

K. Lee and M. E. O’Sullivan, “List decoding of Reed-Solomon codes from a Gröbner basis perspective,” J Symb Comput, vol. 43, no. 9, pp. 645–658, Sep. 2008, doi: 10.1016/j.jsc.2008.01.002.

K. Lee and M. E. O’sullivan, “An Interpolation Algorithm using Gröbner Bases for Soft-Decision De-coding of Reed-Solomon Codes.”

M. Alekhnovich, “Linear Diophantine equations over polynomials and soft decoding of Reed-Solomon codes,” 2002.

A. Zeh, C. Gentner, and D. Augot, “An Interpolation Procedure for List Decoding Reed--Solomon codes Based on Generalized Key Equations,” Oct. 2011, doi: 10.1109/TIT.2011.2162160.

J. Xing, L. Chen, and M. Bossert, “Low-Complexity Chase Decoding of Reed-Solomon Codes Using Module,” IEEE Transactions on Communications, vol. 68, no. 10, pp. 6012–6022, Oct. 2020, doi: 10.1109/TCOMM.2020.3011991.

J. Xing, L. Chen, and M. Bossert, “Progressive Algebraic Soft-Decision Decoding of Reed-Solomon Codes Using Module Minimization,” in IEEE Transactions on Communications, Nov. 2019, vol. 67, no. 11, pp. 7379–7391. doi: 10.1109/TCOMM.2019.2927207.

L. Chen, S. Tang, and X. Ma, “Progressive algebraic soft-decision decoding of reed-solomon codes,” IEEE Transactions on Communications, vol. 61, no. 2, pp. 433–442, 2013, doi: 10.1109/TCOMM.2012.100912.110752.

L. Chen and M. Bossert, “Algebraic Chase Decoding of Reed-Solomon Codes Using Module Minimi-sation,” 2016.

F. Özbudak and B. Özkaya, “A minimum distance bound for quasi-nD-cyclic codes,” Finite Fields and their Applications, vol. 41, pp. 193–222, Sep. 2016, doi: 10.1016/j.ffa.2016.06.004.

M. Shi, J. Tang, M. Ge, L. Sok, and P. Solé, “A special class of quasi-cyclic codes,” Bull Aust Math Soc, vol. 96, no. 3, pp. 513–518, Dec. 2017, doi: 10.1017/S0004972717000636.

E. Gorla and A. Ravagnani, “An algebraic framework for end-to-end physical-layer network coding,” Nov. 2016, [Online]. Available: http://arxiv.org/abs/1611.04226

T. P. Berger and N. el Amrani, “Codes over finite quotients of polynomial rings,” Finite Fields and their Applications, vol. 25, pp. 165–181, 2014, doi: 10.1016/j.ffa.2013.09.004.

M. Boulagouaz and A. Leroy, “(Sigma-Delta) Codes,” Apr. 2013, [Online]. Available: http://arxiv.org/abs/1304.6518

J. Gómez-Torrecillas, F. J. Lobillo, and G. Navarro, “Ideal codes over separable ring extensions,” Aug. 2014, [Online]. Available: http://arxiv.org/abs/1408.1546

J. Gómez-Torrecillas, E. Hieta-Aho, F. J. Lobillo, S. López-Permouth, and G. Navarro, “Some remarks on non projective Frobenius algebras and linear codes,” Des Codes Cryptogr, vol. 88, no. 1, pp. 1–15, Jan. 2020, doi: 10.1007/s10623-019-00666-1.

S. Dyshko and J. A. Wood, “MacWilliams extension property for arbitrary weights on linear codes over module alphabets,” Des Codes Cryptogr, vol. 90, no. 11, pp. 2683–2701, Nov. 2022, doi: 10.1007/s10623-021-00945-w.

C. Guneri and B. Ozkaya, “Multidimensional quasi-cyclic and convolutional codes,” IEEE Trans Inf Theory, vol. 62, no. 12, pp. 6772–6785, Dec. 2016, doi: 10.1109/TIT.2016.2616467.

J. V. S. Morales, “On Lee association schemes over Z4 and their Terwilliger algebra,” Linear Algebra Appl, vol. 510, pp. 311–328, Dec. 2016, doi: 10.1016/j.laa.2016.08.033.

T. Westerbäck, “Parity check systems of nonlinear codes over finite commutative Frobenius rings,” Apr. 2016, [Online]. Available: http://arxiv.org/abs/1604.06996

J. M. García-Rubira and J. A. López-Ramos, “Tensor products of ideal codes over Hopf algebras,” Sci China Math, vol. 56, no. 4, pp. 737–744, Apr. 2013, doi: 10.1007/s11425-013-4579-z.

T. Shanmugam and S. Thanuskodi, “Bibliometric Analysis of the Indian Journal of Chemistry, S. Thanuskodi,” Bibliometric Analysis of the Indian Journal of Chemistry, [Online]. Available: http://unllib.unl.edu/LPP/

K. C. Garg and C. Sharma, “Bibliometrics of library and information science research in India during 2004-2015,” DESIDOC Journal of Library and Information Technology, vol. 37, no. 3, pp. 221–227, 2017, doi: 10.14429/djlit.37.3.11188. H. Mallawaarachchi, Y. Sandanayake,

G. Karunasena, and C. Liu, “Unveiling the conceptual devel-opment of industrial symbiosis: Bibliometric analysis,” Journal of Cleaner Production, vol. 258. Elsevier Ltd, Jun. 10, 2020. doi: 10.1016/j.jclepro.2020.120618.




DOI: https://doi.org/10.24198/jmi.v21.n1.60276.103-112

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jurnal Matematika Integratif

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Published By:

Department of Matematics, FMIPA, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM. 21 Jatinangor


Indexed by:

width=width= width= width= width= width=

 

Visitor Number : free
hit counter View My Stats


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.