Pemodelan Asuransi Pandemi Berdasarkan Model Multiple State SI2RD Model: Studi Kasus Penyebaran COVID-19 di Indonesia

Moch Taufik P Moch Taufik Hakiki

Abstract


Pandemi COVID-19 telah memberikan dampak banyak dampak buruk, di antaranya penurunan ekonomi dan pemutusan hubungan kerja bagi sebagian masyarakat. Asuransi yang dapat memberikan perlindungan dari dampak buruk tersebut menjadi salah satu solusi untuk membantu masyarakat bertahan dalam kondisi pandemi. Penelitian ini bertujuan untuk mengembangkan suatu produk asuransi pandemi berdasarkan model \textit{multiple state} SI2RD. Model ini memodifikasi model kompartemen SIRD deterministik ke dalam bentuk rantai Markov waktu kontinu yang memiliki lima keadaan, dengan keadaan infeksi dipecah menjadi dua keadaan berdasarkan keparahan. Laju transisi dalam model ini diasumsikan konstan dan diestimasi menggunakan data penyebaran penyakit COVID-19 di Indonesia. Selanjutnya, artikel ini mengilustrasikan pengembangan produk asuransi pandemi yang inovatif. Keuntungan model ini terletak pada kemudahan dalam memformulasikan premi beserta cadangan manfaatnya. Selain itu, model ini juga memberikan keleluasaan bagi perusahaan asuransi dalam menentukan besar perlindungan finansial yang cocok kepada setiap pemegang polis berdasarkan tingkat keparahan penyakit.

 

The COVID-19 pandemic has had many adverse effects, including economic decline and layoffs for some communities. Insurance that can provide protection from these adverse impacts is one solution to help people survive in pandemic conditions. This research aims to develop a pandemic insurance product based on the model multiple state SI2RD MODEL. This model modifies the deterministic SIRD compartment model into a continuous time Markov chain that has five states, with the infection state splitted into two states based on severity. The transition rate in this model is assumed to be constant and is estimated using data on the spread of COVID-19 disease in Indonesia. Furthermore, this article illustrates the development of an innovative pandemic insurance product. The advantage of this model lies in the ease of formulating premiums and benefit reserves. In addition, this model also provides flexibility for insurance companies in determining the amount of financial protection that is suitable for each policyholder based on the severity of the disease.


Keywords


Asuransi pandemi, COVID-19, model \textit{multiple state}, rantai Markov.

Full Text:

PDF

References


Onyeaka, H., Anumudu, C. K., Al-Sharify, Z. T., Egele-Godswill, E., Mbaegbu, P. (2021). COVID-19 pandemic: A review of the global lockdown and its far-reaching effects. {em Science progress}, 104(2), 368504211019854. https://doi.org/10.1177/00368504211019854

Kermack, W. O., McKendrick, A. G. (1991). Contributions to the mathematical theory of epidemics. {em Bulletin of mathematical biology}, 53(1-2), 57–87. https://doi.org/10.1007/BF02464424

Boado-Penas, C. M., Eisenberg, J., Şahin, Ş. (2021). {em Pandemics: Insurance and Social Protection}. 10.1007/978-3-030-78334-1.

Zhao, S., Lin, Q., Ran, J., Musa, S. S., Yang, G., Wang, W., Lou, Y., Gao, D., Yang, L., He, D., Wang, M. H. (2020). Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. {em International journal of infectious diseases}, 92, 214–217. https://doi.org/10.1016/j.ijid.2020.01.050

bibitem{5} Bastos, S. B., Cajueiro, D. O. (2020). Modeling and forecasting the early evolution of the Covid-19 pandemic in Brazil. {em Scientific reports}, 10(1), 19457. https://doi.org/10.1038/s41598-020-76257-1

Guerra, E., 2023., An Application of Deterministic Epidemic Models to the Calculation of Insurance Premiums and Benefit Reserve Values. Master Thesis

Zuhairoh, F., Rosadi, D., Effendie, A. (2021). Determination of Basic Reproduction Numbers using Transition Intensities Multi-state SIRD Model for COVID-19 in Indonesia. {em Journal of Physics: Conference Series}. 1821. 012050. 10.1088/1742-6596/1821/1/012050.

Zuhairoh, F., Rosadi, D., Effendie, A. (2023). SVIRD epidemic model with discrete-time hybrid Markov/semi-Markov assumptions, {em Commun. Math. Biol. Neurosci}., 2023 (2023)

Gaidai, O., Wang, F., Yakimov, V. (2023). COVID-19 multi-state epidemic forecast in India. {em Proceedings of the Indian National Science Academy}. 89. 10.1007/s43538-022-00147-5.

Zuhairoh, F., Rosadi, D., Effendie, A. (2022). Multi-state Discrete-time Markov Chain SVIRS Model on the Spread of COVID-19. {em Engineering Letters}. 30(2)

Feng, R., Garrido, J. (2011). Actuarial Applications of Epidemiological Models. {em North American Actuarial Journal}. 15. 10.1080/10920277.2011.10597612.

Dickson, D. C. M., Hardy, M. R., Waters, H. R. (2019). {it Actuarial Mathematics for Life Contingent Risks} (3rd ed.). Cambridge: Cambridge University Press.

Zhai C, Chen P, Jin Z, Siu TK. Epidemic modelling and actuarial applications for pandemic insurance: a case study of Victoria, Australia. Annals of Actuarial Science. 2024;18(2):242-269. doi:10.1017/S1748499523000246

S. M. Ross, {it Introduction to Probability Models}, 10th Edition, Academic Press, San Diego, 2011.

WHO. (2020). Penyakit virus corona (COVID-19). Hämtat från https://www.who.int/health-topics/coronavirus




DOI: https://doi.org/10.24198/jmi.v21.n1.61976.23-40

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jurnal Matematika Integratif

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Published By:

Department of Matematics, FMIPA, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM. 21 Jatinangor


Indexed by:

width=width= width= width= width= width=

 

Visitor Number : free
hit counter View My Stats


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.